Comando Provinciale dei Vigili del Fuoco di Ragusa

RELAZIONE SULLA CARATTERIZZAZIONE GEOTECNICA DEL SITO, SULLA DETERMINAZIONE DELL'AZIONE SISMICA DI RIFERIMENTO E SULLE VERIFICHE DI SICUREZZA GEOTECNICHE

INDICE

1.	Premessa	3
2.	Normativa di riferimento e linee guida	5
3.	Documentazione di riferimento per la redazione dello studio	7
4.	Ubicazione del sito e sintesi degli aspetti geologici	8
5.	Indagini eseguite nel sito e interpretazione dei risultati 5.1 Metodologia di analisi	12 12
	5.2 Descrizione dei risultati	16
6.	Caratterizzazione geotecnica e modello geotecnico di sottosuolo 6.3 Caratterizzazione geotecnica	22 22
	6.4 Modello geotecnico di sottosuolo	28
7.	Determinazione della categoria di sottosuolo	29
8.	Azione sismica di riferimento per l'analisi	31
9.	Verifica della capacità portante	35
10.	Riferimenti bibliografici	64
11.	Allegati	66

1. Premessa

La presente relazione descrive gli aspetti geotecnici dello studio finalizzato a valutare il livello di adeguatezza sismica del *Comando Provinciale di Ragusa* del Corpo Nazionale dei Vigili del Fuoco.

Lo studio ricade nell'ambito delle verifiche tecniche previste dall'art. 2, comma 3 dell'OPCM 3274 del 20/03/2003, da eseguire sugli edifici di cui all'allegato I del D.P.C.M. 6 agosto 2005.

L'intero studio descritto nella presente relazione è stato eseguito in ottemperanza alle prescrizioni della vigente normativa in materia (D.M. 14.01.08) e in ottemperanza alle prescrizioni normative previste dal bando con il quale il *Ministero dell'Interno – Dipartimento dei Vigili del Fuoco del Soccorso Pubblico e Difesa Civile (Direzione Centrale per le Risorse Logistiche e Strumentali, Area Sedi di Servizio)* ha conferito gli incarichi per le verifiche tecniche di cui sopra.

Nel dettaglio la presente relazione riporta:

- le modalità con le quali si è pervenuti ad una caratterizzazione geotecnica dei terreni di fondazione dei fabbricati in esame;
- le modalità con le quali è stata valutata l'azione sismica di riferimento per lo studio del livello di adeguatezza sismica;
- le modalità con le quali sono state analizzate le condizioni di sicurezza del sistema terreno-fondazioni.

La caratterizzazione geotecnica è stata effettuata utilizzando:

- i risultati di alcune indagini geotecniche eseguite nel sito di interesse a corredo del presente studio;
- i risultati di alcune indagini geotecniche eseguite in passato nel sito di interesse a corredo di progetti di interventi che hanno interessato i fabbricati oggetto della presente relazione;
- i risultati di alcune indagini geotecniche eseguite in siti limitrofi a quello in esame ritenute utili per la caratterizzazione geotecnica.

In accordo con le prescrizioni della vigente normativa in materia, la determinazione dell'azione sismica di riferimento per le analisi finalizzate alla valutazione del livello di adeguatezza sismica è stata effettuata sulla base della pericolosità sismica di base del sito tenendo conto degli effetti della risposta

sismica locale attraverso l'individuazione della categoria di sottosuolo. Quest'ultima è stata determinala sulla base di una opportuna interpretazione di tutte le indagini geotecniche disponibili.

Infine, la natura dei terreni di fondazione ha consentito di escludere la necessità di effettuare una verifica alla suscettibilità alla liquefazione.

Nel seguito sono, quindi, riportati:

- i riferimenti normativi, le linee guida e la documentazione di riferimento prese in esame nella redazione dello studio;
- l'ubicazione del sito in esame;
- una descrizione degli aspetti geologici ritenuti utili ai fini della caratterizzazione geotecnica;
- i risultati di alcuni studi di carattere geotecnico eseguiti, in più occasioni, nel sito in esame e in un sito ad esso limitrofo;
- la caratterizzazione geotecnica dei terreni di fondazione dei fabbricati in esame e la definizione di un modello geotecnico di sottosuolo;
- la valutazione dell'azione sismica di riferimento descritta in termini di massima accelerazione orizzontale attesa;
- i risultati delle verifiche di capacità portante del sistema terreno-fondazioni.

2. Normativa di riferimento e linee guida

Il presente studio è stato redatto nel rispetto della normativa tecnica attualmente vigente in Italia per le costruzioni e nel rispetto della normativa tecnica indicata dal *Ministero dell'Interno – Dipartimento dei Vigili del Fuoco del Soccorso Pubblico e Difesa Civile (Direzione Centrale per le Risorse Logistiche e Strumentali, Area Sedi di Servizio)* all'art. 3 del bando con il quale lo stesso Ministero ha inteso conferire gli incarichi per le verifiche tecniche previste dall'art. 2, comma 3 dell'OPCM 3274 del 20/02/2003, sugli edifici di cui all'allegato I del D.P.C.M. 6 agosto 2005.

Con esclusivo riferimento all'oggetto della presente relazione, le valutazioni sono state, pertanto, effettuate nel rispetto delle disposizioni di Legge e delle Normative riportate di seguito.

Normativa nazionale:

- Legge 5 novembre 1971, n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, e strutture metalliche.
- Legge 2 febbraio 1974 n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- D.M. 11 Marzo 1988 Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
- Norme tecniche allegate all'OPCM 3274 del 20.03.2003 come modificate dall'OPCM 3431 del 03/05/2005 ;
- Decreto del Capo del D.P.C. 21 ottobre 2003 e s.m.i.;
- OPCM n. 3362 del 08.07.2004;
- OPCM n. 3376 del 17.09.2004;
- OPCM n. 3502 del 09.03.2006;
- D.M. 14 Gennaio 2008. "Norme tecniche per le costruzioni".
- Circ. Ministero Infrastrutture e Trasporti 2 Febbraio 2009, n. 617. "Istruzioni per l'applicazione delle 'Nuove norme tecniche per le costruzioni' di cui al D.M. 14 Gennaio 2008".

Normativa regionale (Regione Sicilia):

- Delibera di Giunta Regionale n. 408 del 19.12.2003. "Individuazione, formazione ed aggiornamento dell'elenco delle zone sismiche ad adempimenti connessi al recepimento ed attuazione dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003.".
- D.D.G. Dipartimento Regionale della Protezione Civile n. 3 del 15 gennaio 2004, pubblicato nella Gazzetta Ufficiale della Regione siciliana n. 7, parte prima, del 13 febbraio 2004
- D.D.G. Dipartimento Regionale della Protezione Civile n. 1372 del 28/12/2005.
 "Indirizzi regionali per l'effettuazione delle verifiche tecniche di adeguatezza sismica di edifici ed infrastrutture strategiche ai fini di protezione civile o rilevanti in conseguenza di un eventuale collasso e relativo programma temporale attuativo.".

<u>Linee guida</u>

Per alcuni aspetti si è, inoltre, fatto riferimento alle seguenti linee guida:

- Associazione Geotecnica Italiana, A.G.I. (2005) 'Aspetti geotecnici della progettazione in zona sismica'. Linee Guida. Edizione provvisoria, Marzo 2005
- Associazione Geotecnica Italiana, A.G.I. (1977) 'Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche

3. Documentazione di riferimento per la redazione dello studio

Per la redazione dello studio geotecnico descritto nella presente relazione si è fatto riferimento alla documentazione di seguito elencata parte integrante degli elaborati prodotti per l'espletamento dell'incarico.

Struttura in elevazione: rilievi e indagini e valutazione delle vulnerabilità sismica

- Relazione esplicativa (e relativi allegati tecnici e grafici) sul **Rilievo strutturale** dei fabbricati oggetto della presente relazione nello stato di fatto;
- Rapporti di prova sulle **Indagini Strutturali** eseguite sui fabbricati oggetto della presente relazione nello stato di fatto;
- Relazione sulla Valutazione della Vulnerabilità sismica dei fabbricati oggetto della presente relazione comprensiva di tutti gli allegati, dei fascicolo dei calcoli, delle Schede di sintesi di livello 0 e delle Schede di Vulnerabilità.

<u>Rilievi e indagini sulle strutture di fondazione e sui terreni di fondazione</u>

- Relazione esplicativa (e relativi allegati tecnici e grafici) sul **Rilievo strutturale** del fabbricato oggetto della presente relazione nello stato di fatto;
- Rapporti di prova sulle **Indagini Strutturali** eseguite sui fabbricati oggetto della presente relazione nello stato di fatto;
- Rapporto Tecnico di Prova sui risultati delle prove geofisiche sismiche eseguite nel sito oggetto della presente relazione.

Al fine di completare le informazioni disponibili in merito alle caratteristiche geotecniche dei terreni di fondazione sono stati inoltre consultati alcuni studi di carattere geologico e geotecnico eseguiti, in passato, nello stesso sito.

In particolare, sono stati consultati gli studi di seguito elencati ai quali si è avuto accesso mediante il *Comando Provinciale di Ragusa dei Vigili* del Fuoco:

- progetto relativo ai "Lavori di costruzione della Caserma dei Vigili del Fuoco Ragusa", risalente al **1958** (e relativa perizia di Completamento);
- "Progetto dei Lavori di costruzione della Caserma dei Vigili del Fuoco Il Lotto" di Ragusa, risalente al **1962**;
- progetto dell' "Ampliamento della Caserma dei VV.FF. di Ragusa", risalente al 1994-95;
- "Progetto di adeguamento antisismico e sopraelevazione del primo piano dell'ala Est della Caserma dei W.FF. di Ragusa", risalente al **1996**.

4. Ubicazione del sito e sintesi degli aspetti geologici

I fabbricati che costituiscono il *Comando Provinciale di Ragusa* del Corpo Nazionale dei Vigili del Fuoco sono ubicati in un sito dell'area urbana della città di Ragusa. Alla sede si accede dal Civico n.2 del Viale dei Platani.

Il sito è identificato nel seguito dai seguenti valori della latitudine e longitudine geografica:

latitudine 36° 55' 26.26" N longitudine 14° 43' 8.94" E

Le Figure 1 e 2, insieme agli elaborati grafici redatti per l'espletamento dell'incarico mostrano, a differenti scale, l'inquadramento generale dell'area in cui ricade il sito in esame e l'ubicazione di dettaglio di quest'ultimo.

La Figura 3, riporta, invece, una planimetria del lotto su cui ricadono i fabbricati in esame, desunta da alcuni dei progetti richiamati al *paragrafo* 3 della presente relazione. Nella planimetria è anche indicata la denominazione che, in questa sede (e in tutti gli altri elaborati redatti per l'espletamento dell'incarico), è stata adottata per identificare i corpi di fabbrica che costituiscono il *Comando Provinciale di Ragusa*.

Il sito è posto in un'area di altopiano tabulare calcareo, dalla tipica morfologia pianeggiante interrotta da profonde incisioni vallive di origine fluviale.

Nel sito non sono visibili evidenti segni di fenomeni di dissesto in atto e in relazione alla morfologia dell'area non sussitono motivi perché eventuali dissesti si possano manifestare.

Al di là di uno strato di spessore esiguo, costituito da frammenti carbonatici in matrice sabbioso-limosa di terre rosse-brunastre con componenti organiche, nel sito affiora una formazione costituita da un'alternanza di strati calcarenitico-marnosi con strati calcareo-marnosi.

Relativamente agli aspetti sismici, la letteratura geologica non indica la presenza di faglie in prossimità del sito in esame.

Nella recente classificazione prodotta dal *Gruppo di Lavoro per la Redazione della mappa di pericolosità sismica prevista dall'OPCM 3274/2003* (<u>http://zonesismiche.mi.ingv.it/</u>) si evince che il sito ricade nella zona *sismotettonica Z*S935.

Figura 1- Inquadramento generale del sito oggetto di studio.

Figura 2- Ubicazione di dettaglio del sito oggetto di studio.

Figura 3 – Planimetria generale del lotto cui ricadono i fabbricati in esame (planimetria estratta, e modificata, dalla documentazione di riferimento di cui al paragrafo 3 della presente relazione).

5. Indagini eseguite nel sito e interpretazione dei risultati

5.1 Metodologia di analisi

Per la definizione del profilo della velocità di propagazione delle onde di taglio nel deposito di terreno in cui sorgono i fabbricati oggetto della presente relazione sono state eseguite misure sismiche superficiali con metodi basati sulla misura della velocità di propagazione delle onde di superficie.

Le metodologie di indagine basate sulle onde sismiche di superficie prevedono l'utilizzo di una sorgente e di più ricevitori disposti in superficie e consentono di ricavare in maniera indiretta il profilo di velocità delle onde di taglio che caratterizza il deposito di terreno su cui le misure sono eseguite. L'indagine, infatti, consiste nel determinare la velocità di propagazione di onde di superficie appositamente generate da una sorgente verticale, nel caso delle *misure attive*, o contenute nel rumore ambientale, nel caso delle *misure passive*, e nel risalire, poi, ai valori della velocità delle onde di taglio che caratterizzano il deposito di terreni attraverso modelli numerici basati su processi di tipo iterativo. Nelle misure si fa generalmente riferimento alle onde di Rayleigh per le quali l'acquisizione è più semplice e la sperimentazione disponibile nella letteratura tecnica è più ampia e consolidata.

Le modalità con le quali vengono interpretate le misure possono essere illustrate con riferimento allo schema mostrato in Figura 4 nella quale un ipotetico semispazio elastico è sollecitato da una sorgente S di vibrazioni sinusoidali continue di frequenza f.

Figura 4 - Schema per la descrizione della metodologia di interpretazione delle misure sismiche superficiali.

La sorgente genera onde di volume e onde di superficie di Rayleigh; a queste ultime spetta generalmente il maggiore contributo energetico in misura tanto maggiore quanto maggiore è la distanza dalla sorgente.

Se lo spostamento verticale imposto dalla sorgente S è di tipo sinusoidale con ampiezza descritta dalla relazione:

$$u_{o}(t) = u_{o} \cdot \sin(2 \cdot \pi \cdot f)$$

lo spostamento verticale misurato in corrispondenza di un generico ricevitore posto in un punto *P* a distanza x dalla sorgente *S* risulta descritto dalla relazione:

$$u(t) = u_{\rm a} \cdot \sin(2 \cdot \pi \cdot f - \varphi)$$

in cui φ è l'angolo che misura la differenza di fase tra la sorgente e il ricevitore. L'angolo φ è legato alla velocità di fase, ovvero alla velocità di propagazione V_{R} dell'onda di Rayleigh generata, dalla relazione:

$$\varphi = \frac{2 \cdot \pi \cdot f \cdot x}{V_{\rm R}}$$

Lo spostamento in corrispondenza del ricevitore può quindi essere espresso nella forma:

$$u(t) = u_{\rm a} \cdot \sin \left[2 \cdot \pi \cdot f \cdot \left(1 - \frac{x}{V_{\rm R}} \right) \right]$$

Ponendo il ricevitore ad una distanza esattamente pari alla lunghezza d'onda λ risulta $\varphi = 2 \cdot \pi$ ovvero $V_{\rm R} = f \cdot \lambda$. Pertanto, modificando la frequenza f dell'eccitazione imposta dalla sorgente si può costruire una curva, definita *curva di dispersione*, che descrive la variazione della velocità di fase $V_{\rm R}$ con la lunghezza d'onda λ .

La dispersione delle onde di Rayleigh è di natura geometrica e dipende dalle proprietà meccaniche dei terreni attraversati e dalla geometria degli strati che caratterizza il deposito.

Nell'ipotesi ideale di semispazio elastico omogeneo, ovvero di un mezzo non dispersivo, la curva di dispersione può essere determinata utilizzando la teoria della propagazione delle onde sismiche e risulta costante in quanto la velocità di fase è indipendente dalla frequenza dell'eccitazione.

Nel caso in cui il semispazio elastico sia caratterizzato dalla presenza di uno strato superficiale omogeneo di spessore finito con caratteristiche meccaniche differenti dalla rimanente porzione omogenea del semispazio, la teoria della propagazione delle onde sismiche mostra che la velocità di fase tende al valore caratteristico dello strato superficiale, per bassi valori della lunghezza d'onda λ , e al valore caratteristico della velocità di fase della rimanente porzione del semispazio nel caso contrario.

Infine, nel caso di depositi eterogenei stratificati, le onde di Rayleigh sono dispersive e la complessità geometrica non consente di ricavare la curva di dispersione con la teoria della propagazione delle onde sismiche e l'attribuzione della velocità di fase ricavata per i vari strati diventa più incerta. In questi casi si ricorre alle cosiddette *procedure di inversione* mediante le quali, tramite un processo numerico di tipo iterativo, si ottiene il più probabile profilo di velocità del sito, ovvero il profilo di velocità al quale corrisponde la curva di dispersione più vicina possibile a quella determinata sperimentalmente.

Durante l'intero processo i valori della velocità delle onde di taglio V_s che caratterizzano il profilo sono determinati mediante la relazione che lega tale parametro alla velocità di fase $V_{\rm R}$:

$$\left(\frac{V_R}{V_S}\right)^6 - 8 \cdot \left(\frac{V_R}{V_S}\right)^4 + \left[24 - 16 \cdot \left(\frac{V_S}{V_P}\right)^2\right] \cdot \left(\frac{V_R}{V_S}\right)^2 + 16 \cdot \left[\left(\frac{V_S}{V_P}\right)^2 - 1\right] = 0$$

Nella relazione precedente V_P è la velocità di propagazione delle onde *P* legata a V_S mediante il coefficiente di Poisson v dalla relazione:

$$\frac{V_{\rm S}}{V_{\rm P}} = \sqrt{\frac{0.5 - \nu}{1 - \nu}}$$

Lo schema della procedura utilizzato per la determinazione del più probabile profilo di velocità V_s o, in alternativa, del profilo di rigidezza a taglio a piccole deformazioni, è mostrato in Figura 5.

Figura 5 - Schema della procedura per la determinazione del più probabile profilo di rigidezza a taglio a piccole deformazioni utilizzando nelle procedure basate sulle onde di superficie (da Crespellani & Facciorusso, 2010)

Per il sito oggetto della presente relazione, la determinazione del profilo di rigidezza al taglio a piccole deformazioni è stata e effettuata utilizzando la tecnica *M.A.S.W. (multichannel analisys of surface waves)*, introdotta da Park et al. (1999) e da Miller et al. (1999).

Nel caso delle misure attive eseguite con la tecnica *M.A.S.W.* le onde di superficie possono essere generate da una sorgente meccanica superficiale (come la caduta di pesi o la percussione con un martello) o da una sorgente vibratoria sinusoidale che, allineata con più ricevitori (in genere 24) posti ad un interasse costante (equidistanza), viene progressivamente allontanata; tale metodologia è

nota come *walk-away method*. Nel caso delle misure passive, invece, le onde di superficie possono essere quelle contenute nel rumore ambientale.

Le registrazioni simultanee effettuate ai vari ricevitori sono sommate e, in relazione al tipo di sorgente utilizzata, si determina la curva di dispersione con due differenti procedure note come swept-frequency record approach e frequency-wave number spectrum approach (o metodo f-k).

La tecnica *M.A.S.W.* affronta la procedura di inversione utilizzando il solo modo fondamentale di vibrazione delle onde di superficie generate, ovvero la componente di maggiore energia. Tale procedimento risulta, comunque, affidabile nel caso di depositi caratterizzati da profili delle onde di taglio regolari in cui la curva di dispersione è in genere monotona ovvero caratterizzata da velocità di fase che crescono con la lunghezza d'onda.

5.2 Descrizione dei risultati

Nel sito oggetto della presente relazione sono state eseguite indagini MASW di tipo attivo e di tipo passivo. La strumentazione utilizzata nelle misure è dettagliatamente descritta nel rapporto di prova di cui si è detto al *paragrafo* 3 della presente relazione ed al quale si rimanda per maggiori dettagli.

Nelle prove attive, lungo un unico stendimento, sono stati disposti 24 geofoni equispaziati di 2 m eseguendo 2 energizzazioni in A/R con un offset (SX) pari a 2 e 4 m. Il processo di inversione utilizzato ha previsto quattro differenti fasi. Inizialmente le serie temporali registrate ai vari sensori sono trasformate nel dominio frequenza *f*-numero d'onda *k*; successivamente l'individuazione delle coppie *f*–*k*, cui corrispondono i massimi della densità spettrale di energia, ha consentito di risalire alla rappresentazione della curva di dispersione nel piano V_{R} -*f*. Scegliendo dei valori di primo tentativo dei parametri che caratterizzano il modello di sottosuolo a strati piani e paralleli descritto in Figura 5, ovvero definendo lo spessore H_i dell'i-esimo strato del modello e i corrispondenti valori delle coefficiente di Poisson v_i , si è determinata la curva di dispersione teorica. Iterativamente, modificando i parametri del modello a strati piani e paralleli si è poi proceduto a modificare la curva teorica fino a quando questa ha presentato un adattamento ottimale alla corrispondente curva determinata sperimentalmente.

Le prove passive sono state eseguite lungo lo stesso stendimento delle prove attive mantenendo lo stesso numero di geofoni e la stessa equispaziatura. Le misure effettuate sono riferite al rumore ambientale presente nel sito, caratterizzato da basse frequenze che hanno consentito di estendere le informazioni desumibili dalla curva di dispersione a profondità maggiori di quanto avvenuto nelle misure attive.

I risultati delle acquisizioni effettuate e delle relative elaborazioni sono mostrate nelle Figure da 6 a 9. In particolare le serie temporali registrate nelle prove attive e le corrispondenti trasformate nel dominio *f-k* sono descritte in Figura 6 mentre la Figura 7 mostra la rappresentazione della curva di dispersione nel piano V_{R} -*f*. determinata individuando le coppie *f-k* cui corrispondono i massimi della densità spettrale di energia. Le serie temporali registrate nelle prove passive e la rappresentazione della curva di dispersione nel piano V_{R} -*f* sono mostrate in Figura 8. Infine, i risultati combinati delle misure attive e passive sono mostrati in Figura 9 in termini del più probabile profilo della velocità delle onde di taglio V_{S} che caratterizza il sito in esame.

L'analisi dei risultati evidenzia che il sito si presenta omogeneo in termini di caratteristiche di rigidezza a piccole deformazioni. In particolare il profilo di velocità di propagazione delle onde di taglio individuato, mostra valori pressoché costanti con la profondità e sempre superiori a 900 m/s. Tale risultato conferma la presenza in affioramento della formazione litoide costituita dall'alternanza di strati calcarenitico-marnosi con strati calcareo-marnosi. Alla profondità di circa 35 m dal piano campagna si osserva una brusca variazione nel profilo di velocità verosimilmente corrispondente al passaggio dalla porzione fessurata alla porzione intatta della formazione rocciosa affiorante.

a) serie temporali registrate;

b) corrispondenti trasformate nel dominio *f-k*.

Figura 7 – Curva di dispersione determinata con le misure attive.

(b)

Prove passive: a) serie temporali registrate; b) curva di dispersione

Figura 9 – Profilo di velocità delle onde di taglio desunto dalle misure sismiche.

6. Caratterizzazione geotecnica e modello geotecnico di sottosuolo

I dati desunti dalle indagini eseguite in sito a corredo del presente studio (si veda il precedente *paragrafo 5*) e i dati desunti dalle indagini geotecniche effettuate a corredo di studi eseguiti in passato nello stesso sito (descritti negli studi elencati al precedente *paragrafo 3*) sono stati sono stati utilizzati in questa sede per effettuare la caratterizzazione geotecnica dei terreni di fondazione e per la definizione del modello geotecnico di sottosuolo così come previsto dal Capitolo 6 del D.M. 14.01.08.

Relativamente agli studi eseguiti in passato si è fatto riferimento alle indicazioni di carattere geologico e geotecnico presenti nel:

- progetto relativo ai "Lavori di costruzione della Caserma dei Vigili del Fuoco Ragusa", risalente al 1958 (e relativa perizia di Completamento);
- "Progetto dei Lavori di costruzione della Caserma dei Vigili del Fuoco Il Lotto" di Ragusa, risalente al 1962;
- progetto dell' "Ampliamento della Caserma dei W.FF. di Ragusa", risalente al 1994-95;
- "Progetto di adeguamento antisismico e sopraelevazione del primo piano dell'ala Est della Caserma dei W.FF. di Ragusa", risalente al **1996**.

Infine, come già descritto in premessa, sono stati presi in esame anche altri dati di carattere geotecnico già in possesso degli scriventi per precedenti esperienze professionali relative a siti limitrofi a quello in esame.

6.3 Caratterizzazione geotecnica

Successione stratigrafica

Nel sito in esame, in prossimità della superficie è presente uno strato di terreni, di spessore esiguo, costituito da frammenti carbonatici ciottolosi a spigoli vivi e di dimensioni decimetriche, immersi in una matrice sabbioso-limosa di terre rossebrunastre con componenti organiche.

Al di sotto di tale strato superficiale si rinviene la successione calcareniticomarnosa appartenente al m.bro Irminio della F.ne Ragusa, risalente all'Oligo-Miocene. Tale litotipo è caratterizzato da un'alternanza di strati calcareniticomarnosi con strati calcareo-marnosi, molto competenti. L'alternanza è caratterizzata dalla presenza di strati di spessore medio pari a 50 cm circa.

Parametri meccanici

Come descritto negli elaborati tecnici e grafici allegati ai progetti relativi ai diversi interventi edilizi che, in passato, hanno interessato i fabbricati in esame, lo strato di terreni superficiali che si rinviene in sito è stato asportato durante le fasi esecutive relative alla realizzazione delle opere di fondazione. Tali strati, pertanto, non fanno parte del volume di sottosuolo che costituisce i terreni di fondazione. Pertanto, ai fini della caratterizzazione meccanica si ritiene utile definire soltanto un valore di riferimento del peso dell'unità di volume mentre non si ritiene necessario definire parametri meccanici relativi alla resistenza al taglio ed alla deformabilità.

Durante i sopralluoghi effettuati presso i fabbricati in esame, attraverso lo scavo di pozzetti esplorativi di modesto spessore, si è constatato che lo strato superficiale di terreno è generalmente caratterizzato da un modesto stato di addensamento. Si ritiene, pertanto, cautelativo assumere un valore del peso dell'unità di volume pari a 18 kN/m³.

Relativamente alla caratterizzazione meccanica della formazione calcareniticomarnosa affiorante nell'area, si farà, invece, riferimento ai risultati degli studi geologici e geotecnici effettuati a corredo del progetto dell' "*Ampliamento della Caserma dei W.FF. di Ragusa*", risalente al 1994-95, e ai risultati delle indagini di laboratorio effettuate nell'ambito degli stessi studi.

Gli studi di cui sopra evidenziano che la formazione calcarenitico-marnosa affiorante nell'area, almeno nella porzione più superficiale, risulta mediamente fratturata.

Durante l'esecuzione dei lavori relativi all' "*Ampliamento della Caserma dei W.FF. di Ragusa*", in scavi a sezione obbligata, realizzati per il raggiungimento del piano di posa delle fondazioni, sono stati prelevati campioni di roccia successivamente inviati ad un laboratorio autorizzato dove sono stati sottoposti a prove di resistenza a compressione.

Dalla documentazione disponibile (cfr. *paragrafo 3*) si evince che, complessivamente, 8 campioni cubici (lato 10 cm) di roccia sono stati sottoposti a prove di resistenza a compressione uniassiale. I certificati di prova, emessi dal Laboratorio autorizzato Betontest s.r.l. di Ispica (Ragusa), desunti dalla documentazione relativa al progetto di cui sopra, sono riportati nell'*Allegato A* alla presente relazione. Il prospetto seguente riassume i risultati delle prove.

Tabella 1.	Valori della resistenza a compressione σ ottenuti durante le prove di compressione
	effettuate dal laboratorio Betontest s.r.l. di Ispica (Ragusa) su 8 campioni cubici di
	roccia prelevati durante i lavori relativi al progetto dell' "Ampliamento della Caserma
	dei W.FF. di Ragusa".

Data esecuzione	Provino n.	σ (MPa)
21 – 11 – 1995	1	11.5
** **	2	21.5
"	3	14.5
	4	74.5
06 - 16 - 1995	1	21.5
11 II	2	21.0
"	3	21.0
"	4	74.0

Il valore medio della resistenza a compressione, valutato tenendo conto di tutti i dati sperimentali, risulta pari a 32 MPa. Tenendo, invece, conto della variabilità dei dati sperimentali, verosimilmente derivante da un differente stato di fessurazione dei materiali, si ritiene cautelativo assumere un valore di riferimento della resistenza a compressione pari a 18.5 MPa. Tale valore costituisce la media dei dati sperimentali ottenuta non tenendo conto dei due valori estremi della resistenza pari a $\sigma = 74.5$ MPa e $\sigma \approx 74$ MPa.

Indicazioni di carattere geologico desunte dalla letteratura indicano che:

- nell'area in cui ricade il sito in esame, la circolazione idrica nel sottosuolo avviene attraverso le aperture che caratterizzano il litotipo affiorante nell'area. La superficie freatica nell'area si rinviene a circa 70 m di profondità. Nella caratterizzazione meccaniche si è pertanto fatto riferimento al caso di materiali litoidi asciutti;
- per le formazioni litoidi caratteristiche della zona di Ragusa i valori del peso dell'unità di volume risultano mediamente variabili da 21 a 22.5 kN/m³. In

questa sede si ritiene cautelativo assumere un valore del peso dell'unità di volume pari a 21 kN/m³.

La definizione dei parametri di resistenza al taglio è stata effettuate attraverso il metodo di classificazione del Rock Mass Rating (*RMR*) proposto da Bieniawsky (1973). Tale metodo consiste nell'attribuire punteggi a diversi fattori che influiscono sulla resistenza del materiale, e nell'associare alla somma dei punteggi ottenuti una classe di qualità della roccia. Sulla base del punteggio ottenuto il metodo *RMR* indica, per ciascuna classe di qualità dell'ammasso roccioso, degli intervalli di valori di coesione c e di angolo di resistenza al taglio φ . La Tabella 2 mostra lo schema adottato per la classificazione geomeccanica della formazione calcarenitico-marnosa affiorante nell'area.

In particolare, nella tabella i dati cerchiati indicano i valori assunti per il caso in esame sulla base dei valori della resistenza a compressione determinati in laboratorio, sulla base delle condizioni idrauliche del sito e sulla base delle indicazioni di carattere geologico desunti dagli studi disponibili (cfr. paragrafo 3).

La somma dei punteggi attribuiti ad ognuno degli elementi presi in esame è pari a 55. L'esito della classificazione geomeccanica con il metodo *RMR* conduce, quindi, ad un ammasso di *classe III* con valori dei parametri di resistenza al taglio che, ragionevolmente, possono essere assunti variabili nei seguenti intervalli:

c = 200 - 300 kPa $\phi = 25^{\circ} - 35^{\circ}.$

Cautelativamente si assumeranno i seguenti valori caratteristi dei parametri di resistenza al taglio: c = 200 kPa $\phi = 30^{\circ}$.

Infine, sono stati determinati i parametri di deformabilità. In particolare, per la determinazione del modulo di elasticità normale si è fatto riferimento alla relazione di Bieniawsky (1973) modificata da Serafim & Pereira (1983):

 $\log E (GPa) = (RMR-10) / 40$

dalla quale, per il caso in esame, si ottiene un valore del modulo di deformazione pari a circa 10 GPa.

Relativamente al coefficiente di Poisson, sulla base dei dati disponibili in letteratura (Jumikis, 1979), si è assunto un valore pari a v = 0.15.

	PARAN	AETER		R	ANGES OF VAL	JES			
			(a) Classifica	ation Parameters and t	heir ratings				
	Strength of intact	Point-load strength index	>10 MPa	4–10 MPa	2-4 MPa	1–2 MPa	For this low range uniaxial compressiv test is preferred		
1	rock molerial	Uniaxial compressive strength	>250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	1-5 MPa	<1 MP
	Ro	ating	15	12	7	(4)	2	1	0
1	Drill core	quality ROD	90-100%	75-90%	50-75%	25-50%		<25%	
4	Ro	aling	20	17	13	8		3	
,	Spacing of	discontinuities	>2 m	0.6-2 m	200-600 mm	60-200 mm		<60 mm	1
3	Ro	ating	20	15	10	8		5	
4	Condition of	discontinuities	Very rough surfaces Not continuous No separation Unweathered wall rock	Slightly rough sur- faces Separation < 1 mm Slightly weathered walls	Slightly rough sur- faces Separation <1 mm Highly weathered walls	Slickensided surfaces OR Gouge < 5 mm thick OR Separation 1–5 mm Continuous	Soft g thick.(> 5 m	Soft gauge > 5 mm thick OR Separation > 5 mm Continuous	
	Rc	iting	30	25	20	10		0	
		Inflow per 10 m tunnel length	None	< 10 L/min	10-25 L/min	25-125 L/min		> 125	
5	Ground water		OR	OR	OR	OR		OR	
		Ratio Joint water pressure major principal stress	0	0.0-0.1	0.1-0.2	0.2-0.5		>0.5	
				OR	OR	OR	OR		OR
L		General conditions	Completely dry	Damp	Wet	Dripping		Flowing	
	Ro	iting	15	10	7	4		0	
			(b) Rating A	djustment for Joint Or	ientations			-	1
-	Strike and dip orie	ntations of joints	Very favorable	Favorable	Fair	Unfavorable	Very	unfavor	able
		Tunnels	0	-2	-5	-10		-12	
	Ratings	Foundations	0	-2	-7	-15		-25	
		Slopes	0	-5	-25	-50		-80	
			(c) Rock Mass C	lasses Determined from	n Total Ratings				
	Ratin	g	100←81	80←61	60←41	40←21		<20	
Class number		1	Ш.	111	IV	V			
Description		Very good rock	Good rock	Fair rock	Poor rock	Very	poor r	ock	
			(d) Mec	ining of Rock Mass Cl	35585				
	Class nu	mber	1	11	111	IV		v	_
	Average star	nd-up time	10 years for 15 m span	6 months for 8 m span	1 week for 5 m span	10 hours for 2.5 m span	30 mi	nutes fo span	r 1 i
-	Cohesion of	rock mass	>400 kPa	300-400 kPa	200-300 kPa	100-200 kPa	<	100 kP	a
	Friction angle of	of rock mass	· >45°	35-45°	25-35°	15-25°	E	<15°	-

Tabella 2 – Classificazione geomeccanica delle rocce fratturate con il metodo RMR.

Profilo di velocità di propagazione delle onde di taglio

Le misure sismiche effettuate nel sito di interesse hanno consentito di determinare valori affidabili della velocità di propagazione delle onde di taglio V_s fino ad una profondità di circa 33÷34 m dal piano campagna (Figura 9).

In dettaglio i risultati hanno consentito di individuare 5 sismo-strati per ognuno dei quali la Tabella 3 riporta i valori dello spessore e della velocità di propagazione delle onde di taglio. Il corrispondente profilo di velocità è mostrato in Figura 10.

Tabella 3 – Spessore e valore di V_s per i sismo-strati individuati con le indagini geofisiche.

Sismo-strato	1	2	3	4	5
Spessore (m)	4.80	7.20	9.60	8.40	-
V _s (m/s)	904.018	952.395	932.364	930.506	1200.74

Figura 10 - Profilo della velocità di propagazione delle onde di taglio desunto dalle prove MASW effettuate nel sito in esame.

6.4 Modello geotecnico di sottosuolo

Sulla base dell'interpretazione delle indagini descritta in precedenza è stato possibile definire un cautelativo modello geotecnico di sottosuolo per il sito in esame. Il modello è mostrato in Figura 11 e prevede solo due stati di terreno per i quali il prospetto seguente mostra i valori caratteristici dei parametri meccanici.

Strato 1: strato superficiale di materiale detritico

peso dell'unità di volume: $\gamma = 18 \text{ kN/m}^3$

Strato 2: Formazione calcarenitico-marnosa

peso dell'unità di volume:	$\gamma = 21 \text{ kN/m}^3$		
coesione efficace:	c = 200 kPa		
angolo di resistenza al taglio	$\phi = 30^{\circ}$		
modulo di elasticità normale:	<i>E</i> = 10 GPa		
coefficiente di Poisson:	υ = 0.15		

1 m	Strato 1:	strato superficiale di materiale detritico $\gamma = 19 \text{ kN/m}^3$
		Piano di posa delle fondazioni
		Strato 2: Formazione calcarenitico-marnosa
30 m		$\gamma = 19 \text{ kN/m}^3$
00111		c = 200 kPa
		$\phi = 30^{\circ}$
		E = 10 GPa
		v = 0.15

Bedrock

Figura 11 – Modello geotecnico di sottosuolo.

7. Determinazione della categoria di sottosuolo

In accordo con le prescrizioni del D.M.14.01.08, la definizione delle azioni sismiche di riferimento ha previsto una valutazione semplificata degli effetti di sito attraverso la determinazione della *categoria di sottosuolo*. Per tale determinazione si è fatto riferimento alla Tabella 3.2.II del paragrafo 3.2.2 del suddetto D.M. di seguito riportata.

Tabella 3.2.II – Categorie di sottosu	olo
---------------------------------------	-----

Categoria	Descrizione
Α	<i>Ammassi rocciosi affioranti o terreni molto rigidi</i> caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{\$30} compresi tra 360 m/s e 800 m/s (ovvero N _{SPT,30} > 50 nei terreni a grana grossa e c _{u,30} > 250 kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{s,30} compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	<i>Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m,</i> posti sul substrato di riferimento (con $V_s > 800 \text{ m/s}$).

La categoria di sottosuolo è stata determinata sulla base del valore equivalente della velocità delle onde di taglio $V_{s,30}$ nei primi 30 del deposito. Il valore $V_{s,30}$ è stato determinato a partire dal profilo di velocità descritto dal modello mostrato in Figura 10.

Per il calcolo di $V_{s,30}$, in accordo con le indicazioni del D.M. 14.01.08, è stata utilizzata la seguente espressione:

$$V_{\rm s,30} = rac{30}{\sum\limits_{i=1}^{N} rac{h_i}{V_{\rm s,i}}}$$

in cui h_i è lo spessore dell'i-esimo strato caratterizzato da una velocità $V_{s,i}$ ed N è il numero di strati preso in esame nel calcolo.

Nella determinazione si è fatto riferimento ai valori degli spessori h_i e delle velocità $V_{s,i}$ mostrati in Tabella 3 per ognuno dei sismo-strati individuati mediante l'interpretazione delle misure sismiche limitando lo spessore del quarto sismo-

strato al fine di pervenire ad una valutazione su uno spessore complessivo di 30 m.

Il valore della velocità equivalente così ottenuto risulta pari a circa:

 $V_{\rm s,30} = 932 \, {\rm m/s}$

Pertanto, ai fini della classificazione sismica del sito prevista dal D.M.14.01.08, si è fatto riferimento ad un **sottosuolo di categoria** *A.*

8. Azione sismica di riferimento per l'analisi

Nell'ambito di un approccio di tipo prestazionale, le azioni sismiche da prendere in esame nelle verifiche di stabilità sismica del sito, nelle verifiche di sicurezza e di funzionalità degli elementi strutturali in fondazione ed in elevazione e, infine, nelle analisi mirate alla valutazione della sicurezza sismica dei fabbricati, dipendono dalla pericolosità sismica di base del sito in esame e da una prefissata probabilità di superamento $P_{\rm VR}$ nel periodo di riferimento $V_{\rm R}$.

Il periodo di riferimento $V_{\rm R}$ per la valutazione dell'azione sismica dipende dalla vita nominale dell'opera oggetto delle verifiche e dalla cosiddetta classe d'uso dell'opera.

In accordo con le prescrizioni del recente D.M. 14.01.08 (punto 2.4), il periodo di riferimento $V_{\rm R}$ è stato determinato mediante la relazione:

 $V_{\rm R} = V_{\rm N} \cdot C_{\rm U}$

in cui V_N è la vita nominale dell'opera oggetto della verifica e C_U è il coefficiente d'uso.

Nel caso in esame la vita nominale può essere assunta pari a 50 anni in quanto, in relazione al tipo di costruzione (tab. 2.4.1 del D.M. 14.01.08), il fabbricato in esame può essere considerato un'opera ordinaria.

A tal proposito si precisa che tale assunzione è in accordo con le *Linee di Indirizzo* della Commissione Tecnica Consultiva del Ministero dell'Interno, nominata per la revisione delle verifiche di vulnerabilità sismica di cui al D.M. n.72 del 12.12.2010.

Il coefficiente d'uso C_{\cup} è, invece, stato assunto pari a 2 ipotizzando che il fabbricato in esame possa essere classificato come costruzione con *Classe d'Uso IV* ai sensi del D.M. 14.01.08 (punto 2.4.2). Infatti, con riferimento a tale valutazione sono chiare le indicazioni della circolare esplicativa n. 617 del 02.02.2009:

"Per quanto riguarda le classi d'uso III e IV, definizioni più dettagliate sono contenute nel Decreto del Capo Dipartimento della Protezione Civile n. 3685 del 21 ottobre 2003 con il quale sono stati, tra l'altro, definiti, per quanto di competenza statale, gli edifici di interesse strategico e le opere infrastrutturali la cui funzionalità durante gli eventi sismici assume rilievo fondamentale per le finalità di protezione civile (quindi compresi nella classe IV in quanto costruzioni con importanti funzioni pubbliche o strategiche, anche con riferimento alla gestione della protezione civile in caso di calamità); ancora il predetto decreto, sempre nell'ambito di competenza statale, ha definito gli edifici e le opere che possono assumere rilevanza in relazione alle conseguenze di un eventuale collasso (e, quindi, comprese nella classe III, in quanto costruzioni il cui uso preveda affollamenti significativi)."

Il Decreto N. 3865 del 21 ottobre 2003, di cui sopra, relativo alle *Disposizioni* attuative dell'art. 2, commi 2, 3 e 4, dell'ordinanza del Presidente del Consiglio dei Ministri 20 marzo 2003, n. 3274, recante "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", all'elenco A dell'Allegato 2 descrive le categorie di edifici e di opere infrastrutturali di interesse strategico di competenza statale, la cui funzionalità durante gli eventi sismici assume rilievo fondamentale per le finalità di protezione civile. In particolare, relativamente agli edifici il punto 1 dell'elenco A riporta quanto segue:

"Edifici in tutto o in parte ospitanti funzioni di comando, supervisione e controllo, sale operative, strutture ed impianti di trasmissione, banche dati, strutture di supporto logistico per il personale operativo (alloggiamenti e vettovagliamento), strutture adibite all'attività logistica di supporto alle operazioni di protezione civile (movimentazione, trasporto, stoccaggio), strutture per l'assistenza e l'informazione alla popolazione, strutture e presidi ospedalieri, il cui utilizzo abbia luogo da parte dei seguenti soggetti istituzionali:

3) Corpo nazionale dei Vigili del fuoco; "

Sulla base di quanto sopra, il periodo di riferimento V_{R} risulta pertanto pari a:

 $V_{\rm R} = V_{\rm N} \cdot C_{\rm R} = 100$ anni

In accordo con le prescrizioni del D.M. 14.01.08, le verifiche di sicurezza devono essere eseguite con l'obiettivo di verificare il soddisfacimento dei requisiti nei confronti degli stati limite ultimi di salvaguardia della vita (*SLV*) e nei confronti degli stati limite di esercizio definiti stato limite di operatività (*SLO*) e stato limite di danno (*SLD*).

Per ognuno degli stati limite da prendere in esame, i valori della probabilità di eccedenza P_{VR} nel periodo di riferimento V_{R} , cui riferirsi per individuare l'azione sismica di riferimento, sono mostrati nella Tabella 4 e sono stati desunti dalle prescrizioni fornite dal D.M. 14.01.08 (punto 3.2.1).

Stato limite		$P_{\rm VR}$
Stati limita di aporoizio	SLO	81 %
	SLD	63 %
Stati limite ultimi	SLV	10 %

Tabella 4 - Valori di riferimento per la probabilità di eccedenza P_{VR} nel periodo di riferimento V_R

In accordo con le indicazioni del D.M. 14.01.08, la pericolosità sismica di base per il sito in esame è stata definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento roccioso con superficie topografica orizzontale per una prefissata probabilità di eccedenza $P_{\rm VR}$ nel periodo di riferimento $V_{\rm R}$.

In particolare, a_g è stata valutata sulla base delle prescrizioni del punto 3.2 del D.M. 14.01.08 assumendo $V_R = 100$ anni e facendo riferimento ai seguenti valori medi della latitudine e della longitudine geografica:

latitudine	36°	55'	26.26"	Ν
longitudine	14°	43'	8.94 ["]	Е

I valori di a_g ottenuti, espressi come frazione dell'accelerazione di gravità, sono mostrati nella Tabella 5 per ognuno degli stati limite da prendere in esame nell'analisi. Nella tabella sono mostrati, anche i corrispondenti valori:

- del tempo di ritorno T_r ;
- del parametro F_o corrispondente al valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- del parametro T_c^* che consente di definire il valore T_c del periodo che caratterizza lo spettro in accelerazione orizzontale.

Stato limite	a _g [g]	T _r [anni]	F _o [-]	<i>T</i> c*[-]
SLO	0.055	60	2.513	0.268
SLD	0.077	101	2.475	0.289
SLV	0.288	949	2.364	0.455

Tabella 5 - Valori di a_{g} , T_{r} , F_{o} , T_{c}^{\star} valutati per gli stati limite da esaminare .

In accordo con le prescrizioni del D.M. 14.01.08, il valore della massima accelerazione sismica orizzontale $a_{max,s}$ attesa al piano campagna risulta:

$$\boldsymbol{a}_{\max,s} = \boldsymbol{a}_{g} \cdot \boldsymbol{S}_{S} \cdot \boldsymbol{S}_{T}$$

in cui S_s e S_T rappresentano, rispettivamente, il coefficiente di amplificazione stratigrafica e il coefficiente di amplificazione topografica.

Nel caso in esame il sito in esame è caratterizzato da una morfologia suborizzontale. Di conseguenza il fattore di amplificazione topografica S_{T} è stato assunto unitario.

Inoltre, come descritto in precedenza il sito è classificabile come sottosuolo di categoria *A*. Per tale categoria di sottosuolo il coefficiente di amplificazione stratigrafica può essere assunto unitario.:

Per ognuno degli stati limite presi in esame nelle analisi i valori di $a_{max,s}$ sono, quindi, coincidenti con quelli di a_{q} e sono riportati nella Tabella 6.

Stato limite	<i>a</i> g [g]	S _s [-]	S _τ [-]	a _{max,s} [g]
SLO	0.055	1.0	1.0	0.055
SLD	0.077	1.0	1.0	0.077
SLV	0.288	1.0	1.0	0.288

Tabella 6 - Valori di a_{c} , S_{S} , S_{T} ed $a_{max,s}$ valutati per gli stati limite presi in esame nelle verifiche.

9. Verifica della capacità portante

Le verifiche geotecniche del sistema terreno-fondazione hanno riguardato il possibile stato limite ultimo di collasso per carico limite (punto 7.11.5.3.1 del D.M. 14.01.08).

Coerentemente con quanto indicato dal *D.M. 14/01/2008*, il calcolo del carico limite delle fondazioni superficiali, e le relative verifiche di sicurezza, sono stati eseguiti con riferimento alle combinazioni delle azioni di progetto A_i , amplificate per i rispettivi coefficienti parziali (unitari nel caso sismico), e delle proprietà geotecniche desunte dal modello geotecnico di sottosuolo, ridotte mediante i corrispondenti coefficienti parziali.

In particolare la verifica è stata eseguita con riferimento all'approccio 1, combinazione 1 (A1-C2) e con riferimento all'approccio 2 che prevedono le seguenti combinazione dei fattori parziali:

A1-C1: $A_2 + M_2 + R_2$, A2: $A_1 + M_1 + R_3$,

La verifica è stata effettuata seguendo le fasi di analisi descritte nel seguito:

- è stato inizialmente determinato il carico limite verticale del complesso terreno-fondazione con riferimento ai parametri di resistenza del terreno ridotti tramite i coefficienti parziali indicati nella tabella 6.2.II del D.M. 14/01/2008; nel caso sismico i fattori parziali sulle azioni sono stati assunti unitari.
- è stato, poi, ridotto il valore del carico limite così determinato mediante i coefficienti parziali sulle resistente indicati nella tabella 6.4.1 del D.M. 14/01/2008;
- è stato successivamente determinato il valore di progetto della resistenza del sistema terreno-fondazione R_d moltiplicando il carico limite verticale per la superficie efficace della fondazione oggetto della verifica;
- è stato determinato il valore di progetto delle azione E_d amplificando la massima sollecitazione di sforzo normale che interessa la fondazione oggetto della verifica mediante i coefficienti parziali sulle azioni definiti nella tabella 6.2.1 del *D.M. 14/01/2008*; in particolare, il valore di progetto delle azione E_d stato determinato moltiplicando il valore delle tensioni di contatto (determinate dall'analisi della struttura) per la superficie efficace della fondazione oggetto della verifica;
- è stato, infine, verificato che il valore di progetto della resistenza R_d fosse maggiore del valore di progetto dell'azione E_d , ovvero che il rapporto R_d/E_d fosse maggiore dell'unità.

l valori delle pressioni di contatto utilizzati per la definizione del valore di progetto delle azione E_d sono riportati nei tabulati di calcolo allegati alla *Relazione sulla Valutazione della Vulnerabilità sismica* dei fabbricati oggetto della presente relazione, di cui si è già detto al paragrafo 3 della presente relazione ed alla quale si rimanda per maggiori dettagli sulle modalità di analisi.

I prospetti riportati nelle tabelle seguenti, per ognuno dei corpi di fabbrica che costituiscono la sede in esame, riportano i valori delle massime tensioni di contatto terreno-fondazione prese in esame per le verifiche di capacità portante.

In particolare, per il *corpo A1*, la Tabella 7 riporta, per ciascuna tipologia di plinto identificata nei tabulati di calcolo strutturali, le dimensioni della base $(B \times L)$ e dell'altezza (H) del plinto ed il corrispondente valore massimo della pressione di contatto terreno-fondazione presa in esame nella verifica

Plinto tipo	<i>B</i> x <i>L</i> (cm)	<i>H</i> (cm)	σ _{t,max} (kg/cm²)	σ _{t,max} (kPa)
2	75 x 75	55	4,22	413,8
3	85 x 85	65	4,03	395,2
4	75 x 75	55	3,16	309,9
6	90 x 90	65	2,62	256,9
7	100 x 100	70	2,43	238,3
8	100 x 100	65	2,50	245,2
9	50 x 50	25	1,58	154,9
11	90 x 90	55	3,63	355,9

 Tabella 7- Corpo A1 - Dimensioni delle tipologie di plinti presenti e relativo valore massimo delle pressioni di contatto terreno-fondazione.

Relativamente ai corpi *B*1, *B*2 e C la Tabella 8 riporta le dimensioni della base (B) e dell'altezza (H) delle travi di fondazione utilizzate nella verifica ed il corrispondente valore massimo della pressione di contatto terreno-fondazione prese in esame nella verifica.

Tabella 8- Corpi B1, B2 e C - Dimensioni delle tipologie di plinti presenti e relativo valore massimodelle pressioni di contatto terreno-fondazione.

Corpo	<i>B</i> (cm)	<i>H</i> (cm)	σ _{t,max} (kg/cm²)	σ _{t,max} (kPa)
<i>B</i> 1	50	100	2,58	253,0
B2	50	100	2,29	224,6
С	55	60	1,68	164,7
С	40	60	1,22	119,6

Il calcolo del carico limite del sistema terreno-fondazione è stato effettuato utilizzando la relazione di Terzaghi (Terzaghi, 1943; Terzaghi & Peck, 1948) modificata mediante i fattori correttivi proposti da Brinch-Hansen (1970):

$$q_{\text{lim}} = \frac{1}{2} \cdot B' \cdot \overline{\gamma} \cdot N_{\gamma} \cdot i_{\gamma} \cdot s_{\gamma} \cdot d_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma} + c' \cdot N_{c} \cdot i_{c} \cdot s_{c} \cdot d_{c} \cdot b_{c} \cdot g_{c} + q' \cdot N_{q} \cdot i_{q} \cdot s_{q} \cdot d_{q} \cdot b_{q} \cdot g_{q}$$

Nella relazione precedente:

- B' è la larghezza della fondazione depurata dall'eccentricità dei carichi;
- γ rappresenta un particolare valore del peso dell'unità di volume γ del terreno di fondazione, modificato per tenere conto della posizione della superficie libera della falda;
- c' è il valore di progetto della coesione efficace che caratterizza l'inviluppo di rottura del terreno di fondazione;
- q' rappresenta la tensione verticale efficace agente alla profondità del piano di posa delle fondazioni;
- N_γ, N_c, N_q sono i coefficienti di capacità portante funzione del valore di progetto φ'_d dell'angolo di resistenza al taglio che caratterizza l'inviluppo di rottura del terreno di fondazione;
- *i*_γ, *i*_c, *i*_q sono i fattori correttivi del carico limite per tenere conto dell'effetto dell'inclinazione dei carichi;
- s_{γ} , s_{c} , s_{q} sono i fattori correttivi del carico limite per tenere conto della forma della fondazione;
- *d*_γ, *d*_c, *d*_q sono i fattori correttivi del carico limite per tenere conto dell'affondamento del piano campagna;
- b_γ, b_c, b_q sono i fattori correttivi del carico limite per tenere conto dell'inclinazione del piano di posa della fondazione;
- g_{γ} , g_{c} , g_{q} sono i fattori correttivi del carico limite per tenere conto dell'inclinazione del piano campagna.

I fattori di capacità portante N_{γ} , N_{c} , N_{q} sono stati valutati rispettivamente utilizzando le relazioni di Azizi (2000), Reissner (1924) e Prandtl (1921).

Il valore $\overline{\gamma}$ del peso dell'unità di volume γ del terreno di fondazione, è stato determinato tenendo conto della posizione della superficie libera della falda descritta nel modello geotecnico di sottosuolo.

Per ognuno dei corpi di fabbrica in esame è stata effettuata una verifica di capacità portante per ognuna delle tipologie di fondazione presenti nel corpo stesso (vedi descrizione in Tab. 7 e 8).

In particolare per il Corpo A1 è stata effettuata una verifica di capacità portante per ciascuna delle 8 tipologie di plinti indicata nella Tabella 7.

Per i corpi B1, B2 e C è stata effettuata una verifica per ognuna delle tipologie di travi di fondazione indicate nella Tabella 8.

In tutti i casi, quindi, la verifica è stata effettuata con riferimento al valore della massima pressione di contatto determinato mediante l'analisi strutturale.

Le verifiche di capacità portante, infine, sono state effettuate sotto le seguenti ipotesi.

- a) i fattori correttivi s_{γ} , s_c , s_q sono stati cautelativamente assunti unitari in tutte le verifiche che hanno riguardato le travi di fondazione (*Corpi B1, B2* e *C*)e sono stati presi in esame soltanto nelle verifiche relative ai plinti di fondazione (*Corpo A1*);
- b) il contributo al carico limite fornito dal sovraccarico agente alla quota del piano di posa è stato trascurato;
- c) i fattori correttivi d_{γ} , d_{c} , d_{q} , che determinano un incremento del carico limite, non sono stati tenuti in conto e si è assunto in tutti i casi $d_{\gamma} = d_{c} = d_{q} = 1$;
- d) i fattori correttivi per l'inclinazione dei carichi i_{γ} , i_{c} , i_{q} sono stati valutati utilizzando le relazioni di Vesic (1975) assumendo che il rapporto tra azioni orizzontali e azioni verticali fosse pari al massimo valore dell'accelerazione sismica attesa al suolo (a_{max} cfr. paragrafo 8) e tralasciando, cautelativamente, il contributo della coesione;
- e) i fattori correttivi che tengono conto della geometria del piano di posa (b_{γ} , b_{c} , b_{q}) e del pano campagna (g_{γ} , g_{c} , g_{q}) sono stati assunti unitari in considerazione della reale configurazione del sistema terreno-fondazione oggetto della verifica.

I risultati della verifica così effettuata mostrati nelle Tabelle 9-18.

In particolare:

- le tabelle 9 e 10 riportano i risultati delle verifiche, relative alle 8 tipologie di plinti presenti nel *Corpo A1* (vedi Tab.7), effettuate utilizzando l'Approccio 1-Combinazione 2 (Tab.9) e l'Approccio 2 (Tab.10);
- le tabelle 11 e 12 riportano i risultati delle verifiche, relative al Corpo B1, vedi Tab.7) effettuate utilizzando l'Approccio 1-Combinazione 2 (Tab.11) e l'Approccio 2 (Tab.12);
- le tabelle 11 e 12 riportano i risultati delle verifiche, relative al Corpo B2, vedi Tab.7) effettuate utilizzando l'Approccio 1-Combinazione 2 (Tab.13) e l'Approccio 2 (Tab.14);

 le tabelle 13-15 riportano i risultati delle verifiche, relative alle due tipologie di fondazione prese in esame per il *Corpo C* (vedi Tab.7), effettuate utilizzando l'Approccio 1-Combinazione 2 (Tab.15,17) e l'Approccio 2 (Tab.16, 18).

In tutti i casi esaminati la verifica risulta soddisfatta.

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1,00
	Carichi Permanenti	favorevole	0,00
Α	non strutturali	sfavorevole	1.30
	0.111	favorevole	0,00
	Carichi Variabili	sfavorevole	1.30
		$\tan \varphi'_{k}$	1.25
		<i>C</i> ' ₁	1.25
м	Parametri geotecnici	C i	1,25
141	i arametri geoteemer	c _{uk}	1,40
		γ	1,00
D		γ_{qu}	1,60
K	capaci	nta portante	1,80
Valari az	eccanismo di collasso:	Kottura generale	magasta
Valori ca	ratteristici	Valori di	progetto
Parametri		Parametri	
γ_1 (KIN/III) γ_1 (LN/m ³)	21.00	$\gamma_1 (\text{KIN/III})$	21.00
γ_2 (KIN/III)	21,00	γ_2 (KIN/III)	21,00
$c^{+}(\text{KPa})$	200,00	$c^{+}(\text{KPa})$	160,00
$(\tilde{\varphi})$	30	(\circ)	24,8
$C_{\rm u}({\rm Kr}a)$	-	$C_{\rm u}$ (KI a)	-
<i>Caratteristick</i>	ne geometriche	<i>Caratteristicn</i>	e geometriche
D (III)	0,75	D (III)	0,75
$\frac{L (III)}{D (m)}$	0,75	$\frac{L (m)}{D (m)}$	0,75
D (III)	1,00	D(m)	1,00
		B (III) $L^{1}(m)$	0,75
		L (III)	0,75
		θ(*)	0,0
		<i>III</i>	1,30
		$\frac{AZl}{N(kN)}$	0ni 236.1
		$M_{\rm d}({\rm kN})$	230,1
		$M_{\rm r}$ (kN III) lato B	0,0
		$\frac{M_{\rm f}({\rm KN})}{V_{\rm f}({\rm kN})}$	0,0
		$V_{\rm r}$ (KN) lato B	0,0
		$V_{\rm r}({\bf k}{\bf N})$ lato L	0,0
	Disult	oti dollo vorifico	0,0
N -	10.42		'aui
$N_q -$	10,45		oni
$N_{\gamma} =$	10,56	$E_{\rm d}(\rm kN) = 236,08$	
$N_{\rm c} =$	20,42	Carico	limite
$s_q =$	1,24	Cond. Drenate	Cond. non Drenate
$s_{\gamma} = 1,24$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{\rm c} = 1,49$		1533,63	-
$i_q =$	0,60	Resis	tenze
$i_{\gamma} = 0.43$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,56$		$R_{\rm d}(\rm kN)$	$R_{\rm d}({\rm kN})$
$d_{\rm q} = 1,00$		862,7	-
$d_{\gamma} = 1,00$		Esito dell	a verifica
$d_{\rm c} = 1,00$		Cond. Drenate	Cond. non Drenate
$\xi_a = 1.00$		$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}/E_{\rm d}$
$\xi_{\rm u} = 1.00$		3.65	-
ېر ج	1.00	verifica soddisfatta	-
ر کر	7 · *		

 Tabella 9 – Corpo A1 (plinto tipo 2) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

$A = \begin{bmatrix} Carichi Permanenti & favorevole & 1,00 \\ Carichi Permanenti & favorevole & 1,00 \\ Carichi Variabili & favorevole & 0,00 \\ non strutturali & sfavorevole & 1,30 \\ Carichi Variabili & favorevole & 1,30 \\ Carichi Variabili & favorevole & 1,30 \\ Sfavorevole & 1,30 \\ \hline Sfavorevole & 1,25 \\ \hline C_u (klm') & 1,20 \\ \hline Y_u (kN'm') & 1,00 \\ \hline Y_u (kN'm') & 19,00 \\ Y_1 (kN'm') & 19,00 \\ Y_1 (kN'm') & 19,00 \\ Y_1 (kN'm') & 19,00 \\ \hline Y_1 (kN'm') & 19,00 \\ \hline Y_1 (kN'm') & 21,00 \\ Y_1 (kN'm') & 21,00 \\ Y_1 (kN'm') & 21,00 \\ \hline Y_1 (kN'm) & 0,00 \\ \hline F(kB) & 0,05 \\ \hline D (m) & 0,85 \\ \hline D (m) & 0,65 \\ \hline D (m) & 0,00 \\ \hline \hline Kisutati della verifica \\ \hline N_q = 10,6 \\ \hline Kavitati della verifica \\ \hline N_q = 1,00 \\ \hline Cond. Drenate \\ Cond. non Drenate \\ i_c = 0,56 \\ \hline H_1 (m) \\ \hline Cond. Drenate \\ Cond. non Drenate \\ \hline Cond. non Drenate \\ \hline Cond. non Drenate \\ \hline Cond. Drenate \\ \hline Cond. non Drenate \\ \hline S_q = 1,00 \\ \hline Cond. Drenate \\ \hline Cond. non Drenate \\ \hline Cond. non Drenate \\ \hline S_q = 1,00 \\ \hline Verifica a oddisfata \\ - \\ \hline Verifica a oddisfata \\ \hline D \\ \hline Verifica N \\ \hline D \\ \hline Verifica N \\ \hline D \\ \hline Ver$	Approcesso 1 - Combinazione 2: A2+M2+R2				
A Carichi Permanenti non strutturali Silvorevole favorevole 1.00 Carichi Permanenti non strutturali sflavorevole 0.00 Carichi Variabili favorevole 0.00 Carichi Variabili favorevole 0.00 Carichi Variabili favorevole 1.30 M Parametri geotecnici c_{uk} 1.40 γ 1.00 γ_{uu} 1.60 R capacità portante 1.80 Valori caratteristici Parametri geotecnici Parametri geotecnici $P_{\gamma}(kNm')$ 21.00 $\gamma_i(kNm')$ 21.00 $\varphi^*_i(kNm')$ 21.00 $\gamma_i(kNm')$ 21.00 $\varphi^*_i(kPa)$ - $C_u(kPa)$ - Caratteristiche geometriche Caratteristiche geometriche Caratteristiche geometriche B (m) 0.85 B (m) 0.85 L (m) 0.85 D (m) 0.65 D (m) 0.65 D (m) 0.65 B (m) 0.85 D (m) 0.65 B (m)			favorevole	1.00	
A Carichi Permanenti non strutturali Intervence 0.00 Carichi Variabili favorevole 1.30 Carichi Variabili favorevole 1.30 Carichi Variabili favorevole 1.30 M Parametri geotecnici c_k 1.25 M Parametri geotecnici c_k 1.40 Yau 1.60 γ 1.00 R capacità portante 1.80 Valori caratteristici Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici Ya (KNm [*]) 19.00 γ_1 (KNm [*]) 19.00 Y ₁ (KNm [*]) 21.00 γ_2 (KNm [*]) 21.00 c [*] (kPa) 200.00 c [*] (kPa) 160.00 ϕ (°) 30 ϕ (°) 24.8 C (kPa) 106.00 - C (kPa) 0.00 - C M (°) 0.85 D (m) 0.65 D (m) 0.65 <t< th=""><th></th><th>Carichi Permanenti</th><th>sfavorevole</th><th>1 00</th></t<>		Carichi Permanenti	sfavorevole	1 00	
A Inon strutturali Shavorevole 1.30 Carichi Variabili favorevole 0.00 Carichi Variabili favorevole 0.00 sfavorevole 1.30 1.30 M Parametri geotecnici c_k 1.25 c_k 1.25 c_k 1.25 c_{kk} 1.40 γ 1.00 γ_{uk} 1.60 γ_{uk} 1.60 R capacità portante 1.80 γ_{uk} Valori caratteristici Valori di progetto $Parametri geotecnici$ $Parametri geotecnici$ $\gamma_u(kNm^*)$ 19.00 $\gamma_i(kNm^*)$ 19.00 $\gamma_i(kNm^*)$ 19.00 $\gamma_i(kNm^*)$ 21.00 $\gamma_i(kNm^*)$ 19.00 $\gamma_i(kNm^*)$ 21.00 $\gamma_i(kNm^*)$ 21.00 $\gamma_i(kNm^*)$ 19.00 $\gamma_i(kNm^*)$ 19.00 $\zeta_u(kPa)$ $ C_u(kPa)$ $ C_u(kPa)$ $ C_u(kPa)$ $ C_u(kPa)$ $ C_u(kPa)$ $-$		Carichi Permanenti	favorevole	0.00	
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>	Α	non strutturali	sfavorevole	1.30	
Carichi Variabili Intervention 1,30 M Parametri geotecnici $\tan \varphi_k^c$ 1,25 C_k 1,25 C_k 1,25 C_k 1,40 γ 1,00 γ 1,00 γ_{au} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori caratteristici Valori di progetto $Parametri geotecnici Parametri geotecnici Parametri geotecnici \gamma_1 (kN/m3) 21,00 \gamma_2 (kN/m3) 21,00 \gamma_c (kPa) 200,00 c' (kPa) 160,00 \phi (°) 30 \phi (°) 24,8 C_u (kPa) C_q (kPa) Caratteristiche geometriche Caratteristiche geometriche B (m) 0,85 D (m) 0,65 D (m) 0,65 D (m) 0,65 D' (m) 0,85 L' (m) 0,85 L' (m) 0,00 M_q = 10,43 K_d (kN) 288,35$			favorevole	0.00	
M Parametri geotecnici $in q_k$ $1,25$ C_k $1,25$ c_k $1,25$ C_k $1,25$ c_k $1,40$ γ $1,00$ γ_{qu} $1,60$ R capacità portante $1,80$ Meccanismo di collasso: Rottura generale Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m ³) 19,00 γ_1 (kN/m ³) 19,00 γ_2 (kN/m ³) 21,00 γ_2 (kN/m ³) 121,00 c^* (kPa) 200,00 c^* (kPa) 160,00 ϕ (°) 30 ϕ (°) 24.8 C_w (kPa) - C_a (kPa) - C_a (kPa) - C_a (kPa) - C (kPa) 0,65 D (m) 0,85 L (m) 0,85 L (m) 0,85 L (m) 0,85 D (m) 0,65 D (m) 0,65 D (m) 0,65 D (m) 0,65<		Carichi Variabili	sfavorevole	1.30	
$ \mathbf{M} = \begin{bmatrix} \mathbf{M} & \mathbf{V}_{\mathbf{k}} & \mathbf{L} & \mathbf{L} \\ \hline \mathbf{C}_{\mathbf{k}} & \mathbf{L} & \mathbf{L} \\ \hline \mathbf{C}_{\mathbf{k}} & \mathbf{L} & \mathbf{L} \\ \hline \mathbf{V} \\ \mathbf{R} & \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{k} \\ \mathbf{C} \\ \mathbf{k} $			tan $\omega'_{\rm b}$	1 25	
M Parametri geotecnici c_{uk} $1, 40$ q_{uk} $1, 40$ γ $1, 00$ γ_{av} $1, 60$ R capacità portante $1, 80$ Meccanismo di collasso: Rottura generale Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici $9, 00$ γ_1 (kN/m [*]) 19,00 γ_1 (kN/m [*]) 21,00 γ_2 (kN/m [*]) 21,00 $q^{(c)}$ 30 $q^{(c)}$ 24,8 C_u (kPa) - C_u (kPa) - Caratteristiche geometriche Caratteristiche geometriche R_{ax} D (m) 0,65 D (m) 0,65 D (m) 0,65 D (m) 0,65 M_q (kN) 28k,3 M_r (kNm) laub. 0,0 M_q (kN) 0,0 M_r (kNm) laub.				1.25	
M Parametri geolecnici c_{kk} 1,40 γ 1,00 γ_{qu} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m ³) 19,00 γ_1 (kN/m ³) 19,00 γ_2 (kN/m ³) 21,00 c' (kPa) 160,00 φ (°) 30 φ (°) 24,8 C_u (kPa) 200,00 c' (kPa) 160,00 φ (°) 30 φ (°) 24,8 C_u (kPa) - C $c_{atheristiche geometriche Caratteristiche geometriche Caratteristiche geometriche B (m) 0,85 L (m) 0,85 L (m) 0,85 L' (m) 0,85 L (m) 0,85 L (m) 0,85 L' (m) 0,85 D (m) 0,65 D' (m) 0,65 M_c (kN) 288,35 M_c (kN) 1,50<$	м	D-manatri gaotoonioi		1,40	
γ_{u} 1,00 γ_{u} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori di progetto Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici γ_1 (kN/m²) 19,00 γ_1 (kN/m²) 19,00 γ_2 (kN/m²) 21,00 γ_2 (kN/m²) 21,00 c' (kPa) 200,00 c' (kPa) 160,00 ϕ (°) 30 ϕ (°) 24,8 C u (kPa) - C u (kPa) - - C aratteristiche geometriche Caratteristiche geometriche S B (m) 0,85 L (m) 0,85 B (m) 0,85 B (m) 0,85 L (m) 0,65 D (m) 0,65 B (m) 0,85 M (kN) 288,3 M _T (kN) 288,3 M _T (kN) 0,0 M (kN) 288,3 M _T (kN) 288,3 M _T (kN) 0,0 M (k(kN) 288,3 M _T (kN)	IVI	Parametri geotechici	${\cal C}_{ m uk}$	1,40	
γ_{qu} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottra generale Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m ³) 19,00 γ_1 (kN/m ³) 19,00 γ_2 (kN/m ³) 21,00 φ (%) 30 φ (%) 24,00 φ (kPa) 200,00 c ² (kPa) 160,00 φ (%) 30 φ (%) 24,8 C a (kPa) - C a (kPa) - C a (kPa) - C a (kPa) - C a (kPa) 0,85 B (m) 0,85 L (m) 0,85 D (m) 0,665 D (m) 0,65 D (m) 0,85 L (m) 0,85 L (m) 0,85 L (m) 0,85 M (kN) 288,3 M (kN) 288,3 M (kN) 0,0			γ	1,00	
R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m [*]) 19,00 γ_1 (kN/m [*]) 19,00 γ_2 (kN/m [*]) 21,00 φ (kPa) 200,00 c^* (kPa) 160,00 φ (c) 30 φ (c) 24,8 C_u (kPa) - C Caratteristiche geometriche B (m) 0,85 D (m) 0,85 D (m) 0,65 D (m) 0,65 D (m) 0,65 D (m) 0,85 L (m) 0,85 L (m) 0,85 L (m) 0,85 L (m) 0,0 M_q (kN) 288,33 M_r (kN·m) lato B 0,0			γ_{qu}	1,60	
Valori caratteristici Valori di collasso: Rottura generale Valori caratteristici Valori di rogetto $Parametri geotecnici$ $Parametri geotecnici$ γ_1 (kN/m²) 19,00 γ_2 (kN/m²) 21,00 c' (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 21,00 c' (kPa) 24,8 C_u (kPa) - $Caratteristiche geometriche Caratteristiche geometriche B (m) 0,85 L (m) 0,85 D (m) 0,65 D (m) 0,65 D (m) 0,65 D' (m) 0,85 L' (m) 0,85 L' (m) 0,85 D (m) 0,65 D' (m) 0,85 L' (m) 0,85 L' (m) 0,85 L' (m) 0,85 L' (m) 0,0 M_r (kN) 10,0 M_r (kN) 10,0 M_r (kN) 0,0 $	R	capaci	ità portante	1,80	
Valori caratteristici Valori di progetio Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m ³) 19,00 γ_1 (kN/m ³) 19,00 γ_2 (kN/m ³) 21,00 γ_2 (kN/m ³) 21,00 c° (kPa) 200,00 c° (kPa) 160,00 ϕ (°) 30 ϕ (°) 24,8 C_u (kPa) - C_u (kPa) - Caratteristiche geometriche Caratteristiche geometriche 0,85 L (m) 0,85 L (m) 0,85 D (m) 0,65 M_n (kN) m 1,50 m M_n (kN) m 0,0 m M_n (kN) m 0,0 V_r (kN) m m M_n (kN) m 0,0 V_r (kN) m m M_n (kN) m $0,0$ V_r (kN) m <th>Me</th> <th>ccanismo di collasso:</th> <th>Rottura generale</th> <th></th>	Me	ccanismo di collasso:	Rottura generale		
Parametri geotecnici Parametri geotecnici γ_1 (kN/m²) 19,00 γ_1 (kN/m²) 19,00 γ_2 (kN/m²) 21,00 γ_2 (kN/m²) 21,00 c' (kPa) 200,00 c' (kPa) 160,00 ϕ (°) 30 ϕ (°) 24,8 C _u (kPa) - C Caratteristiche geometriche Caratteristiche geometriche Caratteristiche geometriche B (m) 0,85 L (m) 0,85 L (m) 0,85 D (m) 0,65 D (m) 0,65 D (m) 0,85 E L' (m) 0,85 L (m) 0,85 L' (m) 0,85 0 (°) 0,00 m 1,50 M _q (kN) 288,33 M _q (kN) 288,35 M _q (kN) 0,00 V _r (kN) lato B 0,00 V _r (kN) 0,00 V _q = 10,43 Azioni Azioni E 4 (kN) 288,35 N 2 (kN) 2 (kN) 1 (kPa) 1 (kPa) 1 (kPa) 1 (kPa) 1 (kPa) 1 (kPa	Valori ca	ratteristici	Valori di	progetto	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parametri	geotecnici	Parametri	geotecnici	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_1 (kN/m^2)$	19,00	$\gamma_1 (kN/m^2)$	19,00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\gamma_2 (kN/m^2)$	21,00	$\gamma_2 (kN/m^3)$	21,00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	160,00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	φ (°)	30	φ (°)	24,8	
$\begin{tabular}{ c c c c c c } \hline Caratteristiche geometriche \\ \hline B (m) & 0,85 & B (m) & 0,85 \\ \hline L (m) & 0,85 & L (m) & 0,85 \\ \hline D (m) & 0,65 & D (m) & 0,65 \\ \hline D (m) & 0,65 & D (m) & 0,65 \\ \hline D (m) & 0,65 & D (m) & 0,85 \\ \hline L (m) & 0,85 & \hline L (m) & 0,085 & \hline H (m) & 0,85 & \hline H (m) & 0,085 & \hline H (m) & 0,01 & \hline M_{d} (kN) & 1ab B & 0,0 & \hline M_{d} (kN) & 1ab B & 0,0 & \hline M_{d} (kN m) & 1ab L & 0,0 & \hline V_{t} (kN) & 1ab L & 0,0 & \hline W_{t} (kPa) & 1536,91 & - & & & & & & & & & & & & & & & & & $	$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Caratteristich	e geometriche	Caratteristich	e geometriche	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>	0,85	<u><i>B</i></u> (m)	0,85	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L (m)	0,85	L (m)	0,85	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>D</i> (m)	0,65	<i>D</i> (m)	0,65	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			<i>B</i> '(m)	0,85	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			L'(m)	0,85	
m 1,50 Azioni N_d (kN) 288,3 M_r (kN·m) lato B 0,0 M_r (kN·m) lato B 0,0 M_r (kN·m) lato B 0,0 V_r (kN) lato B 0,0 V_r (kN) lato L 0,0 V_r (kN) 0,0 $S_q = 1,24$ <i>Azioni</i> $S_q = 1,24$ <i>Cond. Drenate Cond. non Drenate</i> $S_q = 1,49$ 1536,91 - $i_q = 0,60$ <i>Resistenze Cond. non Drenate</i> $i_q = 0,56$ R_d (kN) <th< th=""><td colspan="2"></td><td>θ (°)</td><td>0,0</td></th<>			θ (°)	0,0	
Azioni N_d (kN) 288,3 M_r (kN·m) lato B 0,0 M_r (kN·m) lato L 0,0 W_r (kN·m) lato L 0,0 V_r (kN) lato B 0,0 V_r (kN) lato B 0,0 V_r (kN) lato L 0,0 V_r (kN) lato L 0,0 V_r (kN) 0,0 S_c = 1,24 <i>Azioni</i> S_c = 1,49 1536,91 - i_q = 0,60 <i>Resistenze</i> - i_q = 0,60 <i>Resistenze Cond. Drenate Cond. non Drenate</i> i_q = 1,00 <i>Cond. Drenate Cond. non Drena</i>			m	1,50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Azi	oni	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$N_{\rm d}({\rm kN})$	288,3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$M_{\rm r}$ (kN·m) _{lato B}	0,0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$M_{\rm r}$ (kN·m) _{lato L}	0,0	
$V_r(kN)_{lato L}$ 0,0 $V_r(kN)$ 0,0 Risultati della verifica $N_q = 10,43$ Azioni $N_q = 10,56$ $E_d(kN) = 288,35$ $N_c = 20,42$ Carico limite $s_q = 1,24$ Cond. Drenate Cond. non Drenate $s_q = 1,24$ Qlim (kPa) $q_{lim}(kPa)$ $s_c = 1,49$ 1536,91 - $i_q = 0,60$ Resistenze - $i_q = 1,00$ 1.110,4 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ 3,85 - $\xi_r = 1,00$ Verifica soddisfatta -			$V_{\rm r}$ (kN) _{lato B}	0,0	
$V_r(kN)$ 0,0 Risultati della verifica $N_q = 10,43$ Azioni $N_{\gamma} = 10,56$ $E_d(kN) = 288,35$ $N_c = 20,42$ Carico limite $s_q = 1,24$ Cond. Drenate Cond. non Drenate $s_{\gamma} = 1,24$ Qlim (kPa) qlim (kPa) $s_c = 1,49$ 1536,91 - $i_q = 0,60$ Resistenze - $i_q = 0,56$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ 1.110,4 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_{\gamma} = 1,00$ 3.85 - $\xi_s = 1.00$ verifica soddisfatta -			$V_{\rm r}$ (kN) _{lato L}	0,0	
Risultati della verifica $N_q = 10,43$ Azioni $N_q = 10,56$ $E_d(kN) = 288,35$ $N_c = 20,42$ Carico limite $s_q = 1,24$ Cond. Drenate Cond. non Drenate $s_{\gamma} = 1,24$ $q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_c = 1,49$ 1536,91 - $i_q = 0,60$ Resistenze - $i_q = 0,60$ Cond. Drenate Cond. non Drenate $d_q = 1,00$ 1.110,4 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d/E_d R_d/E_d $\xi_{\gamma} = 1,00$ 3,85 - $\xi_{\gamma} = 1,00$ Verifica soddisfatta - <th></th> <th></th> <th>$V_{\rm r}(\rm kN)$</th> <th>0,0</th>			$V_{\rm r}(\rm kN)$	0,0	
$N_q = 10,43$ Azioni $N_{q} = 10,56$ $E_d(kN) = 288,35$ $N_c = 20,42$ Carico limite $s_q = 1,24$ Cond. Drenate Cond. non Drenate $s_q = 1,24$ $Q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_c = 1,49$ 1536,91 - $i_q = 0,60$ Resistenze - $i_q = 0,56$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ 1.110,4 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d/E_d R_d/E_d R_d/E_d $\xi_q = 1,00$ 3,85 - - $\xi_c = 1.00$ verifica soddisfatta -		Risult	ati della verifica		
$N_{\gamma} = 10,56$ $E_{d}(kN) = 288,35$ $N_{c} = 20,42$ Carico limite $s_{q} = 1,24$ Cond. Drenate Cond. non Drenate $s_{\gamma} = 1,24$ Qlim (kPa) $q_{lim}(kPa)$ $s_{c} = 1,49$ 1536,91 - $i_{q} = 0,60$ Resistenze - $i_{q} = 0,60$ Resistenze - $i_{q} = 0,56$ $R_{d}(kN)$ $R_{d}(kN)$ $d_{q} = 1,00$ Cond. Drenate Cond. non Drenate $d_{q} = 1,00$ Cond. Drenate Cond. non Drenate $d_{q} = 1,00$ R_{d}(kN) R_{d}(kN) $d_{q} = 1,00$ Cond. Drenate Cond. non Drenate $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} <th>$N_{q} =$</th> <th>10,43</th> <th>Azi</th> <th>oni</th>	$N_{q} =$	10,43	Azi	oni	
$N_c = 20,42$ Carico limite $s_q = 1,24$ Cond. DrenateCond. non Drenate $s_{\gamma} = 1,24$ q_{lim} (kPa) q_{lim} (kPa) $s_c = 1,49$ 1536,91- $i_q = 0,60$ Resistenze $i_{\gamma} = 0,43$ Cond. DrenateCond. non Drenate $i_c = 0,56$ R_d (kN) R_d (kN) $d_q = 1,00$ 1.110,4- $d_{\gamma} = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_{\gamma} = 1,00$ R_d / E_d R_d / E_d $\xi_{\gamma} = 1,00$ Verifica soddisfatta-	$N_{\pi} =$	10.56	$E_{\perp}(kN) = 288.35$		
$s_q = 1,24$ Cond. DrenateCond. non Drenate $s_q = 1,24$ $q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_c = 1,49$ $1536,91$ - $i_q = 0,60$ Resistenze $i_q = 0,43$ Cond. DrenateCond. non Drenate $i_c = 0,56$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ $1.110,4$ - $d_c = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_\gamma = 1,00$ R_d / E_d R_d / E_d $\xi_\gamma = 1,00$ $yerifica$ soddisfatta-	$N_{0}^{\prime} =$	20.42	Carico limito		
$s_q = 1,24$ Cond. Difference Cond. non Difference $s_{\gamma} = 1,24$ $q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_c = 1,49$ 1536,91 - $i_q = 0,60$ Resistenze - $i_q = 0,43$ Cond. Drenate Cond. non Drenate $i_c = 0,56$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ 1.110,4 - $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ S,85 - $\xi_s = 1.00$ verifica soddisfatta -	<u> </u>	1.24	Cond Dranata	Cond non Dranata	
$S_{\gamma} = 1,24$ q_{lim} (Kra) q_{lim} (Kra) $s_{c} = 1,49$ 1536,91 - $i_{q} = 0,60$ Resistenze - $i_{\gamma} = 0,43$ Cond. Drenate Cond. non Drenate $i_{c} = 0,56$ R_{d} (kN) R_{d} (kN) $d_{q} = 1,00$ 1.110,4 - $d_{\gamma} = 1,00$ Esito della verifica $d_{c} = 1,00$ Cond. Drenate Cond. non Drenate $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{q} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{q} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{q} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $\xi_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$ $g_{g} = 1,00$	5 q	1,24	$(1-D_2)$	$(1-D_2)$	
$s_c = 1,49$ 1536,91 - $i_q = 0,60$ Resistenze $i_q = 0,43$ Cond. Drenate Cond. non Drenate $i_c = 0,56$ R_d (kN) R_d (kN) $d_q = 1,00$ 1.110,4 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $d_q = 1,00$ Cond. Drenate Cond. non Drenate $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d R_d / E_d $\xi_q = 1,00$ 3,85 - - $\xi_c = 1.00$ verifica soddisfatta -	$s_{\gamma} = 1,24$		$q_{\rm lim}({\rm KFa})$	$q_{\rm lim}({\bf Kra})$	
$i_q = 0,60$ Resistenze $i_\gamma = 0,43$ Cond. Drenate Cond. non Drenate $i_c = 0,56$ R_d (kN) R_d (kN) $d_q = 1,00$ 1.110,4 - $d_\gamma = 1,00$ Esito della verifica $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_\gamma = 1,00$ 3,85 - $\xi_c = 1.00$ verifica soddisfatta -	$s_{c} = 1,49$		1536,91 Basis	-	
$i_{\gamma} = 0,43$ Cond. Drenate Cond. non Drenate $i_{c} = 0,56$ $R_{d}(kN)$ $R_{d}(kN)$ $d_{q} = 1,00$ 1.110,4 - $d_{\gamma} = 1,00$ Esito della verifica $d_{c} = 1,00$ Cond. Drenate Cond. non Drenate $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{\gamma} = 1,00$ 3,85 - $\xi_{c} = 1.00$ verifica soddisfatta -	<i>l</i> _q –	0,60	Kesis	tenze	
$I_c = 0.56$ R_d (KN) R_d (KN) $d_q = 1.00$ 1.110,4 - $d_\gamma = 1.00$ Esito della verifica $d_c = 1.00$ Cond. Drenate Cond. non Drenate $\xi_q = 1.00$ R_d / E_d R_d / E_d $\xi_\gamma = 1.00$ 3.85 - $\xi_c = 1.00$ verifica soddisfatta -	$l_{\gamma} =$	0,43	Cond. Drenate	Cond. non Drenate	
$d_q = 1,00$ 1.110,4 $d_{\gamma} = 1,00$ Esito della verifica $d_c = 1,00$ Cond. Drenate $\xi_q = 1,00$ R_d / E_d $\xi_{\gamma} = 1,00$ R_d / E_d $\xi_{\gamma} = 1,00$ verifica soddisfatta	$l_{c} = 0,56$		$K_{\rm d}(\rm KIN)$	$K_{\rm d}(\rm KIN)$	
$d_{\gamma} = 1,00$ Esito della verifica $d_c = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_{\gamma} = 1,00$ 3,85- $\xi_c = 1.00$ verifica soddisfatta-	$d_{q} = 1,00$		1.110,4	-	
$d_c = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_\gamma = 1,00$ 3,85- $\xi_c = 1.00$ verifica soddisfatta-	$d_{\gamma} = 1,00$		Esito della	a verifica	
$\xi_{q} = 1,00$ $\xi_{q} = 1,00$ R_{d} / E_{d}	$d_{\rm c} = 1,00$		Cond. Drenate	Cond. non Drenate	
$\xi_{\gamma} = 1,00$ 3,85 - $\xi_{\gamma} = 1.00$ verifica soddisfatta -	$\xi_q =$	1,00	$R_{\rm d}/E_{\rm d}$	$R_{\rm d}/E_{\rm d}$	
$\xi_{\rm c} = 1.00$ verifica soddisfatta -	ξ,=	1.00	3.85	-	
	$\xi_{c} =$	1.00	verifica soddisfatta	-	

 Tabella 9 – Corpo A1 (plinto tipo 3) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1.00
	Carichi Permanenti	sfavorevole	1 00
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1 30
	non on and an	favorevole	0.00
	Carichi Variabili	sfavorevole	1 30
		tan @'	1.35
			1,25
		ι k	1,20
М	Parametri geotecnici	$c_{ m uk}$	1,40
		γ	1,00
		γ_{qu}	1,60
R	capaci	ità portante	1,80
Me	ccanismo di collasso:	Rottura generale	
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
c'(kPa)	200,00	c'(kPa)	160,00
φ (°)	30	φ (°)	24,8
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	ie geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0,75	<i>B</i> (m)	0,75
<i>L</i> (m)	0,75	<i>L</i> (m)	0,75
D (m)	0,55	D (m)	0,55
	· · · · ·	<i>B</i> '(m)	0.75
		<i>L</i> '(m)	0.75
		θ(°)	0.0
		m	1.50
		Azi	oni
		$N_{\rm A}$ (kN)	178.1
		$M (kN \cdot m)_{1 \leftarrow p}$	0.0
		$M_{\rm r}$ (kN·m) _{late L}	0.0
		V(kN)	0.0
		$V_{\rm r}$ (kN) $L_{\rm r}$	0.0
		$V_{r}(\mathbf{kN})$	0.0
	Risult	ati della verifica	0,0
N =	10.42		
$I \mathbf{v}_{\mathbf{q}} =$	10,45	Azioni	
$N_{\gamma} =$	10,56	$E_{\rm d}(\rm Kin) =$	178,14
$N_{\rm c} =$	20,42	Carico	limite
$s_q =$	1,24	Cond. Drenate	Cond. non Drenate
$s_{\gamma} =$	1,24	q _{lim} (kPa)	q _{lim} (kPa)
$s_{\rm c} = 1,49$		1533,63	-
$i_q =$	0.60	Resis	tenze
$i_{\gamma} =$	0.43	Cond. Drenate	Cond. non Drenate
$i_{\rm c} =$	0.56	$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{z} = 1.00$		862.7	-
$d_{q} = 1.00$			
$a_{\gamma} = 1.00$		Esuo ueu	a verifica
<u>u_c</u> –	1,00	Cona. Drenaie	Cona. non Drenaie
$\xi_q =$	1,00	$K_{\rm d}$ / $E_{\rm d}$	$K_{\rm d}$ / $E_{\rm d}$
$\xi_{\gamma} =$	1,00	4,84	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 9 – Corpo A1 (plinto tipo 4) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

	Approccio 1 - Co	mbinazione 2: A2+M2+R2	2
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1,00
	Carichi Permanenti	favorevole	0,00
Α	non strutturali	sfavorevole	1.30
		favorevole	0,00
	Carichi Variabili	sfavorevole	1,30
		$\tan \phi'_k$	1.25
		<i>C</i> ' _k	1.25
м	Parametri geotecnici	C 1	1,40
111	i didiliciti geoteeniei	℃ Uk	1,40
		Y	1,00
P	canac	Y _{qu}	1,00
K Me	ccanismo di collasso:	Rottura generale	1,00
Valori ca	ratteristici	Valori di	nrogetto
Parametri	gentecnici	Paramotri	geotecnici
$\gamma_1 (kN/m^3)$	19.00	$\gamma_1 (kN/m^3)$	19.00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> '(kPa)	200.00	<i>c</i> '(kPa)	160.00
φ (°)	30	0 (°)	24.8
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	e geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0,90	<i>B</i> (m)	0,90
<i>L</i> (m)	0,90	<i>L</i> (m)	0,90
<i>D</i> (m)	0,65	<i>D</i> (m)	0,65
		<i>B</i> '(m)	0,90
		L'(m)	0,90
		θ (°)	0,0
		т	1,50
		Azi	oni
		$N_{\rm d}$ (kN)	211,2
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm kN})_{\rm lato L}$	0,0
		$V_{\rm r}(\rm kN)$	0,0
	Risult	ati della verifica	
$N_q =$	10,43	Azi	oni
$N_{\gamma} =$	10,56	$E_{\rm d}({\rm kN}) = 211,25$	
$N_{\rm c} =$	20,42	Carico limite	
$s_q =$	1,24	Cond. Drenate	Cond. non Drenate
$s_{\gamma} = 1,24$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1,49$		1538,55	-
$i_{a} =$	0,60	Resis	tenze
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,56$		$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{q} = 1,00$		1.246,2	-
$d_{y} = 1.00$		Esito dell	a verifica
$d_{c} = 1.00$		Cond. Drenate	Cond. non Drenate
$\xi_a = 1.00$		R_{d}/E_{d}	R_{d}/E_{d}
$\begin{aligned} \varsigma_q & 1,00\\ \varepsilon &= 1.00 \end{aligned}$		5 90	-
γ = ۶	1 00	verifica soddisfatta	-
 مح	1,00	verifica soudistatta	-

 Tabella 9 – Corpo A1 (plinto tipo 6) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

Approcesso 1 - Combinazione 2: A2+M2+R2				
		favorevole	1.00	
	Carichi Permanenti	sfavorevole	1 00	
	Carichi Permanenti	favorevole	0.00	
Α	non strutturali	sfavorevole	1 30	
	non su acaran	favorevole	0.00	
	Carichi Variabili	sfavorevole	1 30	
		tan m'	1.35	
			1,25	
		c _k	1,20	
М	Parametri geotecnici	${\cal C}_{\rm uk}$	1,40	
		γ	1,00	
		$\gamma_{ m qu}$	1,60	
R	capaci	ità portante	1,80	
Me	eccanismo di collasso:	Rottura generale		
Valori ca	ratteristici	Valori di	progetto	
Parametri	geotecnici	Parametri	geotecnici	
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00	
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00	
<i>c</i> ' (kPa)	200,00	c'(kPa)	160,00	
φ (°)	30	φ (°)	24,8	
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-	
Caratteristich	ie geometriche	Caratteristich	e geometriche	
<i>B</i> (m)	1,00	<i>B</i> (m)	1,00	
<i>L</i> (m)	1,00	<i>L</i> (m)	1,00	
<i>D</i> (m)	0,70	<i>D</i> (m)	0,70	
		<i>B</i> '(m)	1,00	
		L'(m)	1,00	
		θ (°)	0,0	
		m	1,50	
		Azi	oni	
		$N_{\rm d}$ (kN)	241,2	
		M_r (kN·m) late B	0,0	
		M_r (kN·m) lato L	0,0	
		V_{r} (kN) _{19to B}	0.0	
		$V_{\rm r}(\rm kN)_{\rm late I}$	0.0	
		$V_{\rm r}(\rm kN)$	0,0	
	Risult	ati della verifica		
$N_{-}=$	10.43	Azi	ani ani	
1, d M -	10,75	Azioni		
$I_{V\gamma} = $	10,56	$E_{\rm d}({\rm kN}) = 241,20$		
$_{IV}$ c =	20,42	Carico	limite	
$s_q =$	1,24	Cond. Drenate	Cond. non Drenate	
$s_{\gamma} = 1,24$		q _{lim} (kPa)	q _{lim} (kPa)	
s _c = 1,49		1541,83	-	
$i_q =$	0,60	Resis	tenze	
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate	
<i>i</i> _c =	0,5 <u>6</u>	$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$	
$d_{a} = 1.00$		1.541,8	-	
$d_{\rm u} = 1.00$		Esito dell	a vorifica	
$d_{\gamma} = 1.00$		Cond Drenate	Cond non Drenate	
۰۰ _c ۶ –	1,00	P/F	D/F	
_ وح ۲	1,00	$\Lambda_{\rm d}$ / $L_{\rm d}$	Λ _d / L _d	
ςγ-	1,00	6,39	-	
$\xi_c =$	1,00	verifica soddisfatta	-	

 Tabella 9 – Corpo A1 (plinto tipo 7) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1,00
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1,30
	0.111	favorevole	0,00
	Carichi Variabili	sfavorevole	1,30
		$\tan \phi'_k$	1,25
		c'_k	1 25
м	Parametri geotecnici	C 1	1,40
111	r drumeur geoteemer	C UK	1,40
		Y	1,00
P	canac	Yqu ità portante	1,00
K Me	capaci ccanismo di collasso:	Rottura generale	1,00
Valori ca	ratteristici	Valori di	nrogetto
Parametri	gentecnici	Paramotri	geotecnici
$\gamma_1 (kN/m^3)$	19.00	$\gamma_1 (kN/m^3)$	19.00
$\gamma_1 (m m)$ $\gamma_2 (kN/m^3)$	21.00	$\gamma_2 (kN/m^3)$	21.00
$c'(\mathbf{k}\mathbf{P}\mathbf{a})$	200.00	$c'(\mathbf{k}\mathbf{P}\mathbf{a})$	160.00
(A) (0 (°)	30	0 (°)	24.8
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristick	ne geometriche	Caratteristich	e geometriche
B (m)	1 00	B (m)	1 00
L(m)	1,00	$L(\mathbf{m})$	1 00
D(m)	0,65	D (m)	0,65
	,	<i>B</i> '(m)	1,00
		L'(m)	1.00
		θ (°)	0.0
		m	1,50
		Azi	oni
		$N_{\rm d}({\rm kN})$	248,1
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm kN})_{\rm lato L}$	0,0
		$V_{\rm r}(\rm kN)$	0,0
	Risult	ati della verifica	
$N_q =$	10,43	Azi	oni
$N_{\gamma} =$	10,56	$E_{\rm d}(\rm kN) = 248.10$	
$N_{c}^{\prime} =$	20,42	Carico limite	
$s_{c} =$	1.24	Cond. Drenate	Cond. non Drenate
r q	1 24	n: (kPa)	dr (kPa)
$\frac{s_{\gamma} - 1,24}{s_{\gamma} - 1,40}$		15/1 82	Ylim (Kr d)
$i_c = 0.60$		1041,00 Rosis	tenze
ι _q – i –	0.43	Cond Drenate	Cond non Dronato
$i_{c} = 0.56$		$R_{1}(kN)$	$R_{1}(kN)$
$d_{c} = 1.00$		1 5/1 9	
$u_{q} = 1,00$		1.341,0	
$a_{\gamma} = 1,00$		Esito della verifica	
$d_{\rm c} = 1,00$		Cond. Drenate	Cona. non Drenate
$\xi_{q} = 1,00$		$R_{\rm d}$ / $E_{\rm d}$	$K_{\rm d}$ / $E_{\rm d}$
$\xi_{\gamma} =$	1,00	6,21	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 9 – Corpo A1 (plinto tipo 8) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

	Approccio 1 - Co	mbinazione 2: A2+M2+R2	2
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1,00
	Carichi Permanenti	favorevole	0,00
A	non strutturali	sfavorevole	1,30
	0.111	favorevole	0,00
	Carichi Variabili	sfavorevole	1,30
		$\tan \phi'_k$	1.25
		<i>C</i> ' _k	1.25
м	Parametri geotecnici	C 1	1,40
111	r arametri geoteemer	℃ Uk	1,40
		Y	1,00
P	canac	Y _{qu}	1,00
K Me	capaci ccanismo di collasso:	Rottura generale	1,00
Valori ca	ratteristici	Valori di	nrogetto
Parametri	gentecnici	Paramotri	geotecnici
$\gamma_1 (kN/m^3)$	19.00	$\gamma_1 (kN/m^3)$	19.00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> '(kPa)	200.00	<i>c</i> '(kPa)	160.00
φ (°)	30	0 (°)	24.8
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	ne geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0,50	<i>B</i> (m)	0,50
<i>L</i> (m)	0,50	<i>L</i> (m)	0,50
<i>D</i> (m)	0,25	<i>D</i> (m)	0,25
		<i>B</i> '(m)	0,50
		L'(m)	0,50
		θ (°)	0,0
		т	1,50
		Azi	oni
		$N_{\rm d}$ (kN)	38,7
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}$ (kN) _{lato L}	0,0
		$V_{\rm r}(\rm kN)$	0,0
-	Risult	ati della verifica	
$N_q =$	10,43	Azi	oni
$N_{\gamma} =$	10,56	$E_{\rm d}({\rm kN}) = 38,74$	
$N_{\rm c} =$	20,42	Carico limite	
$s_q =$	1,24	Cond. Drenate	Cond. non Drenate
$s_{y} = 1,24$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{\rm c} = 1,49$		1525.43	-
$i_{a} =$	0,60	Resis	tenze
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,56$		$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{g} = 1.00$		381,4	-
$d_{y} = 1.00$		Esito dell	a verifica
$d_{c} = 1.00$		Cond. Drenate	Cond. non Drenate
$\xi_{-} = 1.00$		R_{A}/E_{A}	R_{A}/E_{A}
$s_q = 1,00$ $\epsilon = 1.00$		9.85	- u
- ع ۲	1,00	yerifica soddiafatta	-
ےد —	1,00	vennea souuisiatta	-

 Tabella 9 – Corpo A1 (plinto tipo 9) - Verifica di capacità portante: Approccio 1 – Combinazione 2.

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1.00
	Carichi Permanenti	favorevole	0,00
Α	non strutturali	sfavorevole	1,30
		favorevole	0.00
	Carichi Variabili	sfavorevole	1.30
		tan o' _k	1.25
		C'1	1.25
м	Peremetri genteonioi	C K	1,25
191	r arameuri geotecinci	c _{uk}	1,40
		γ	1,00
D		γ _{qu}	1,60
R	capac	ità portante	1,80
Me	eccanismo di collasso:	Rottura generale	·
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (KN/m)$	19,00	$\gamma_1 (\text{KN/m})$	19,00
$\gamma_2 (k N/m^2)$	21,00	$\gamma_2 (KN/m^2)$	21,00
<i>c</i> '(kPa)	200,00	<i>c</i> '(kPa)	160,00
$\phi(^{\circ})$	30	$\phi(^{\circ})$	24,8
С _и (кра)	-	C _u (KPa)	-
Caratteristich	ne geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0,90	<i>B</i> (m)	0,90
L (m)	0,90	L (m)	0,90
<i>D</i> (m)	0,55	<i>D</i> (m)	0,55
		<i>B</i> '(m)	0,90
		L'(m)	0,90
		θ (°)	0,0
		т	1,50
		Azi	oni
		$N_{\rm d}$ (kN)	508,4
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}$ (kN) _{lato L}	0,0
		$V_{\rm r}(\rm kN)$	0,0
	Risult	ati della verifica	
$N_q =$	10,43	Azi	oni
$N_{\gamma} =$	10,56	$E_{\rm d}(\rm kN) = 508.36$	
N_{c} =	20,42	Carico limite	
$s_{a} = 1.24$		Cond. Drenate	Cond. non Drenate
q = 1.24		a. (kPa)	a. (kPa)
$s_{\gamma} = 1.49$		4lim (KI u)	q _{lim} (Kr u)
$\frac{s_c}{i} =$	0.60	1038,00 -	
i_q	0,00	Cond Drenate	Cond non Drenate
$i_{\gamma} = i_{\gamma}$	0,45	$R_{\rm c}(kN)$	$R_{\rm c}(\rm kN)$
l_c	1.00	$\Lambda_{d}(\mathbf{K}\mathbf{I})$	$M_{d}(\mathbf{k}(\mathbf{v}))$
$u_{q} = 1,00$		1.240,2	-
$a_{\gamma} = 1,00$		Esito dell	a verifica
$d_{\rm c} =$	1,00	Cond. Drenate	Cond. non Drenate
$\xi_q =$	1,00	$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}$ / $E_{\rm d}$
$\xi_{\gamma} =$	1,00	2,45	-
$\xi_c =$	1,00	verifica soddisfatta	-

 Tabella 9
 – Corpo A1 (plinto tipo 11) - Verifica di capacità portante: Approccio 1 – Comb. 2.

	Approacie 7: A1+M1+D3			
	Арргос	favorevole	1 00	
	Carichi Permanenti	sfavorevole	1 30	
	Carichi Permanenti	favorevole	0.00	
Α	non strutturali	sfavorevole	1.50	
	The state of the s	favorevole	0.00	
	Carichi Variabili	sfavorevole	1.50	
		tan o'	1,00	
			1,00	
м	Doromotri gootoonioi	с _к	1,00	
IVI	Parametri geotechici	C _{uk}	1,00	
		γ	1,00	
		γ _{qu}	1,60	
R	capaci	ità portante	2,30	
Me	eccanismo di collasso:	Rottura generale		
Valori ca	ratteristici	Valori di	i progetto	
Parametri	geotecnici	Parametri	geotecnici	
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00	
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00	
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00	
φ (°)	30	φ (°)	30,0	
$C_{\rm u}$ (kPa)	-	С _и (кра)	-	
Caratteristich	ie geometriche	Caratteristich	e geometriche	
<i>B</i> (m)	0,75	<i>B</i> (m)	0,75	
L (m)	0,75	L (m)	0,75	
<i>D</i> (m)	1,00	<i>D</i> (m)	1,00	
		<i>B</i> '(m)	0,75	
		L'(m)	0,75	
		θ(°)	0,0	
		т	1,50	
		Azi	ioni	
		$N_{\rm d}$ (kN)	236,1	
		$M_{\rm r}$ (kN·m) _{lato B}	0,0	
		$M_{\rm r}$ (kN·m) _{lato L}	0,0	
		$V_{\rm r}$ (kN) _{lato B}	0,0	
		$V_{\rm r}({\rm KN})_{\rm lato L}$	0,0	
	D: 1/	$V_{\rm r}({\rm KN})$	0,0	
N	Risult	ati della verifica		
$N_q =$	18,40	Azi	oni	
$N_{\gamma} =$	22,40	$E_{\rm d}(\rm kN) =$	236,08	
$N_{\rm c} =$	30,14	Carico	limite	
$s_q =$	1,30	Cond. Drenate	Cond. non Drenate	
$s_{y} = 1.30$		q _{lim} (kPa)	q _{lim} (kPa)	
$s_{c} = 1.60$		2465.75	-	
$i_{a} =$	0,60	Resis	tenze	
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate	
$i_{c} =$	0,58	$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$	
d =	1 00	1 387 0	-	
d = 1.00		1.507,0 Enite J-1		
$u_{\gamma} = 1,00$		Estio dell	u verijicu Cond. non Duonata	
$u_{\rm c} =$	1,00	D / E	Conu. non Drenale	
$\xi_q =$	1,00	$K_{\rm d}$ / $E_{\rm d}$	κ _d / E _d	
$\xi_{\gamma} =$	1,00	5,88	-	
$\xi_c =$	1,00	verifica soddisfatta	-	

 Tabella 10 – Corpo A1 (plinto tipo 2) - Verifica di capacità portante: Approccio 2

Approceio 7: A1+M1+P3			
	трргос	favorevole	1.00
	Carichi Permanenti	sfavorevole	1 30
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1 50
	non strutturun	favorevole	0.00
	Carichi Variabili	sfavorevole	1.50
		tan o'	1,00
			1,00
м	Doromotri gootoonioi	с _к	1,00
IVI	Parametri geotechici	$c_{\rm uk}$	1,00
		γ	1,00
		γ_{qu}	1,60
R	capaci	ità portante	2,30
Me	eccanismo di collasso:	Rottura generale	
Valori ca	ratteristici	Valori di	i progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00
φ (°)	30	φ(°)	30,0
$C_{\rm u}$ (kPa)	-	C _u (KPa)	-
Caratteristich	ie geometriche	Caratteristiche geometriche	
<i>B</i> (m)	0,85	<i>B</i> (m)	0,85
L (m)	0,85	L (m)	0,85
<i>D</i> (m)	0,65	<i>D</i> (m)	0,65
		<i>B</i> '(m)	0,85
		L'(m)	0,85
		θ (°)	0,0
		т	1,50
		Azi	oni
		$N_{\rm d}$ (kN)	288,3
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm KN})_{\rm lato L}$	0,0
	D: 1/	$V_{\rm r}({\rm KN})$	0,0
N	Kisuit	ati della verifica	
$N_q =$	18,40	Azioni	
$N_{\gamma} =$	22,40	$E_{d}(kN) =$	288,35
$N_{\rm c} =$	30,14	Carico limite	
$s_q =$	1,30	Cond. Drenate	Cond. non Drenate
$s_{y} = 1.30$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1,60$		2471,44	-
$i_{q} = 0,60$		Resis	tenze
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,58$		$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{q} = 1.00$		1.785.6	-
$d_{y} = 1.00$		Foito dall	la verifica
$d_{\gamma} = 1.00$		Cond Drenate	Cond non Dronato
- 4 c بر 2	1,00	$R \downarrow F$	R / F
$\zeta_q = 1,00$		Λ_d / L_d	Λ _d /L _d
$\xi_{\gamma} =$	1,00	6,19	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 10 – Corpo A1 (plinto tipo 3) - Verifica di capacità portante: Approccio 2

	Annroc	Approacia 7: A1+M1+R3			
	трргос	favorevole	1.00		
	Carichi Permanenti	sfavorevole	1 30		
	Carichi Permanenti	favorevole	0.00		
Α	non strutturali	sfavorevole	1 50		
	non strutturun	favorevole	0.00		
	Carichi Variabili	sfavorevole	1 50		
		tan o'	1,00		
		c'	1,00		
м	D (') ' '	c k	1,00		
M	Parametri geotecnici	${\cal C}_{\rm uk}$	1,00		
		γ	1,00		
		$\gamma_{ m qu}$	1,60		
R	capaci	ità portante	2,30		
Me	eccanismo di collasso:	Rottura generale			
Valori ca	ratteristici	Valori d	i progetto		
Parametri	geotecnici	Parametri	geotecnici		
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00		
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00		
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00		
φ (°)	30	φ (°)	30,0		
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-		
Caratteristich	ne geometriche	Caratteristiche geometriche			
<i>B</i> (m)	0,75	<i>B</i> (m)	0,75		
<i>L</i> (m)	0,75	<i>L</i> (m)	0,75		
<i>D</i> (m)	0,55	<i>D</i> (m)	0,55		
		<i>B</i> '(m)	0,75		
		<i>L</i> '(m)	0,75		
		θ (°)	0,0		
		т	1,50		
		Azi	ioni		
		$N_{\rm d}$ (kN)	178,1		
		$M_{\rm r}$ (kN·m) _{lato B}	0,0		
		$M_{\rm r}$ (kN·m) _{lato L}	0,0		
		$V_{\rm r}$ (kN) _{lato B}	0,0		
		$V_{\rm r}$ (kN) _{lato L}	0,0		
		$V_{\rm r}(\rm kN)$	0,0		
	Risult	ati della verifica			
$N_q =$	18,40	Azioni			
$N_{\gamma} =$	22,40	$E_{\rm d}({\rm kN}) = 178.14$			
N_=	30 14	Carico limite			
$r_{c} = 1.20$		Cond Drenate	Cond non Dranata		
$3_{q} = 1,50$		conta. Drenate	conta. non Drenate		
$S_{\gamma} = 1.50$		$q_{lim}(kra)$	$q_{lim}(\kappa r a)$		
$\frac{s_c - 1,60}{i_c - 0.60}$		2465,/5 Basic	-		
$l_q = 0.60$ $i_s = 0.42$		Cond Ducesta	Cond non Duran at		
$i_{\gamma} = 0.43$ $i_{\gamma} = 0.59$		D (LNI)	D (LN)		
$l_{c} = 0.58$		$\pi_d(KN)$	$\pi_d(KIN)$		
$a_{q} = 1,00$		1.387,0	-		
$d_{\gamma} = 1,00$		Esito dell	a verifica		
$d_{\rm c} = 1,00$		Cond. Drenate	Cond. non Drenate		
$\xi_{q} = 1,00$		$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}$ / $E_{\rm d}$		
$\xi_{v} =$	1,00	7,79	-		
$\xi_{c} = 1.00$		verifica soddisfatta	-		

 Tabella 10 – Corpo A1 (plinto tipo 4) - Verifica di capacità portante: Approccio 2

Approceio 2: A1+M1+R3			
	трргос	favorevole	1.00
	Carichi Permanenti	sfavorevole	1 30
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1 50
	non strutturun	favorevole	0.00
	Carichi Variabili	sfavorevole	1.50
		tan o'	1,00
			1,00
м	Doromotri gootoonioi	с _к	1,00
IVI	Parametri geotechici	$c_{\rm uk}$	1,00
		γ	1,00
		γ_{qu}	1,60
R	capaci	ità portante	2,30
Me	eccanismo di collasso:	Rottura generale	
Valori ca	ratteristici	Valori di	i progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00
φ (°)	30	φ(°)	30,0
$C_{\rm u}$ (kPa)	-	C _u (KPa)	-
Caratteristich	ie geometriche	Caratteristiche geometriche	
<i>B</i> (m)	0,90	<i>B</i> (m)	0,90
L (m)	0,90	L (m)	0,90
<i>D</i> (m)	0,65	<i>D</i> (m)	0,65
		<i>B</i> '(m)	0,90
		L'(m)	0,90
		θ (°)	0,0
		т	1,50
		Azi	oni
		$N_{\rm d}$ (kN)	211,2
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm KN})_{\rm lato L}$	0,0
	D: 1/	$V_{\rm r}({\rm KN})$	0,0
N	Risuit:	ati della verifica	. <u>.</u>
$N_q =$	18,40	Azioni	
$N_{\gamma} =$	22,40	$E_{\rm d}({\rm kN}) = 211,25$	
$N_{\rm c} =$	30,14	Carico limite	
$s_q =$	1,30	Cond. Drenate	Cond. non Drenate
$s_{\rm x} = 1.30$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{0} = 1.60$		2474.28	-
$i_{a} =$	0.60	Resis	tenze
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate
$i_{c} = 0.58$		$R_{\rm d}$ (kN)	R_{d} (kN)
$d_{a} = 1.00$		2 004 2	-
d = 1.00		E	
$u_{\gamma} = 1,00$		Estio dell	u verijicu Cond. non Duonata
$u_{\rm c} =$	1,00	D / E	Cona. non Drenale
$\xi_q =$	1,00	$K_{\rm d}$ / $E_{\rm d}$	κ _d / E _d
$\xi_{\gamma} =$	1,00	9,49	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 10 – Corpo A1 (plinto tipo 6) - Verifica di capacità portante: Approccio 2

Approcess 2: A1+M1+D2			
	Approc	favorevole	1 00
	Carichi Permanenti	sfavorevole	1 30
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1 50
	non strutturun	favorevole	0.00
	Carichi Variabili	sfavorevole	1 50
		tan o'	1,00
		c'	1,00
м	D (' , ' '	c k	1,00
M	Parametri geotecnici	$c_{\rm uk}$	1,00
		γ	1,00
		$\gamma_{ m qu}$	1,60
R	capac	ità portante	2,30
Me	eccanismo di collasso:	Rottura generale	
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00
φ (°)	30	φ (°)	30,0
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	ne geometriche	Caratteristich	e geometriche
<i>B</i> (m)	1,00	<i>B</i> (m)	1,00
<i>L</i> (m)	1,00	<i>L</i> (m)	1,00
<i>D</i> (m)	0,70	<i>D</i> (m)	0,70
		<i>B</i> '(m)	1,00
		<i>L</i> '(m)	1,00
		θ (°)	0,0
		т	1,50
		Azi	oni
		$N_{\rm d}$ (kN)	241,2
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm kN})_{\rm lato L}$	0,0
		$V_{\rm r}({\rm kN})$	0,0
	Risult	ati della verifica	
$N_{a} =$	18,40	Azi	oni
N =	22 40	$E_{\rm s}(\rm kN) =$	241.20
N =	30.14	$\frac{E_{d}(RI) - 241,20}{Caviso limits}$	
	1 20	Cand Duanata	Cond non Duonato
5 q —	1,30	Cona. Drenale	Cona. non Drenale
$s_{\gamma} = 1,30$		$q_{lim}(kPa)$	q _{lim} (kPa)
$s_{c} = 1,60$		2479,97	-
$l_{q} = 0.60$		Resis	tenze
$i_{\gamma} = 0.43$		Cond. Drenate	Cond. non Drenate
$l_{c} = 0,58$		$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{q} = 1,00$		2.480,0	-
$d_{\gamma} = 1,00$		Esito dell	a verifica
$d_{\rm c} = 1,00$		Cond. Drenate	Cond. non Drenate
$\xi_a = 1.00$		$R_{\rm d}/E_{\rm d}$	$R_{\rm d}/E_{\rm d}$
$\xi = 1.00$		10.28	_
γ⊂ ع	1.00	verifica soddisfatta	
$\xi_{\rm c} = 1,00$		vennea souuisiatta	-

 Tabella 10 – Corpo A1 (plinto tipo 7) - Verifica di capacità portante: Approccio 2

	Approacia 7: A1+M1+R3			
	Тергос	favorevole	1.00	
	Carichi Permanenti	sfavorevole	1 30	
	Carichi Permanenti	favorevole	0.00	
Α	non strutturali	sfavorevole	1.50	
	non su avaian	favorevole	0,00	
	Carichi Variabili	sfavorevole	1.50	
		tan o'	1,00	
			1,00	
м	D	C k	1,00	
IVI	Parametri geotecnici	${\cal C}_{\rm uk}$	1,00	
		γ	1,00	
_		γ_{qu}	1,60	
R	capaci	ità portante	2,30	
Me	eccanismo di collasso:	Rottura generale		
Valori ca	ratteristici	Valori d	i progetto	
Parametri	geotecnici	Parametri	geotecnici	
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00	
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00	
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00	
φ (°)	30	φ (°)	30,0	
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-	
Caratteristich	ne geometriche	Caratteristich	ne geometriche	
<i>B</i> (m)	1,00	<i>B</i> (m)	1,00	
<i>L</i> (m)	1,00	<i>L</i> (m)	1,00	
<i>D</i> (m)	0,65	<i>D</i> (m)	0,65	
		<i>B</i> '(m)	1,00	
		<i>L</i> '(m)	1,00	
		θ (°)	0,0	
		т	1,50	
		Az	ioni	
		$N_{\rm d}$ (kN)	248,1	
		$M_{\rm r}$ (kN·m) _{lato B}	0,0	
		$M_{\rm r}$ (kN·m) _{lato L}	0,0	
		$V_{\rm r}({\rm kN})_{\rm latoB}$	0,0	
		$V_{\rm r}({\rm kN})_{\rm lato L}$	0,0	
		$V_{\rm r}({\rm kN})$	0,0	
	Risult	ati della verifica		
$N_q =$	18,40	Azioni		
$N_{\gamma} =$	22,40	$E_{\rm d}$ (kN) = 248.10		
$N_{o} =$	30.14	Carico limite		
s = 1.30		Cond Drenate	Cond non Drenate	
$s_q = 1.20$		a (kPa)	conta. non Drenate	
$S_{\gamma} = 1.50$		$q_{lim}(\mathbf{K} \mathbf{a})$	q _{lim} (KI a)	
$\frac{3 c - 1,00}{i = 0.60}$		24/9,9/ Dasi	-	
l _q –	0,60	Coul Duounto	Cond non Dronato	
$l_{\gamma} = i_{\gamma} = i_{\gamma}$	0,43	D (LN)	Cond. non Drenate	
$l_{c} = 0.38$		$\mathbf{K}_{d}(\mathbf{K}\mathbf{N})$	$\mathbf{A}_{d}(\mathbf{KIN})$	
$a_{q} = 1,00$		2.480,0	-	
$d_{\gamma} = 1,00$		Esito del	la verifica	
$d_{\rm c} = 1,00$		Cond. Drenate	Cond. non Drenate	
$\xi_q =$	1,00	$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}$ / $E_{\rm d}$	
ξ,=	1,00	10,00	-	
$\xi_{c} = 1.00$			1	

 Tabella 10 – Corpo A1 (plinto tipo 8) - Verifica di capacità portante: Approccio 2

Approceio 2: A1+M1+R3			
	rippioe	favorevole	1.00
	Carichi Permanenti	sfavorevole	1 30
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1 50
		favorevole	0.00
	Carichi Variabili	sfavorevole	1.50
		tan o'	1,00
		C'1	1,00
м	Doromotri gootoonioi	с _к	1,00
IVI	Parametri geotecilici	$c_{\rm uk}$	1,00
		γ	1,00
D		γ _{qu}	1,60
R	capac	ità portante	2,30
Me	eccanismo di collasso:	Rottura generale	•
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^2)$	19,00	$\gamma_1 (kN/m^2)$	19,00
$\gamma_2 (kN/m^2)$	21,00	$\gamma_2 (kN/m^2)$	21,00
<i>c</i> '(kPa)	200,00	<i>c</i> '(kPa)	200,00
$\phi(^{\circ})$	30	$\varphi(^{\circ})$	30,0
C _u (KPa)	-	C _u (KPa)	-
Caratteristich	ne geometriche	Caratteristich	e geometriche
<u>B (m)</u>	0,50	<u> </u>	0,50
$\frac{L(m)}{D(m)}$	0,50	L(m)	0,50
<i>D</i> (m)	0,25	D (m)	0,25
		<u>B'(m)</u>	0,50
		<i>L'</i> (m)	0,50
		θ(°)	0,0
		m	1,50
		AZI	0ni
		$N_{\rm d}$ (KIN)	38,/
		$M_{\rm r}$ (KIN'M) _{lato B}	0,0
		$M_{\rm r}$ (KIN'III) lato L	0,0
		$V_{\rm r}$ (KN) lato B	0,0
		$V_r(KN)_{lato L}$	0,0
	Diguel4	, ^r (KI)	0,0
N -	NISUIU	ati uena verinca	•
N _q –	18,40	Azioni	
$N_{\gamma} =$	22,40	$E_{d}(kN) =$	38,74
$N_{\rm c} =$	30,14	Carico	limite
$s_q =$	1,30	Cond. Drenate	Cond. non Drenate
$s_{\gamma} = 1,30$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1,60$		2451,53	-
$i_{q} = 0,60$		Resis	tenze
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} =$	0,58	$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{\rm q} = 1,00$		612,9	-
$d_{v} = 1.00$		Esita doll	a verifica
$d_{\alpha} = 1.00$		Cond. Drenate	Cond. non Drenate
$\frac{46}{5} = 1.00$		R_{\perp}/E_{\perp}	R_{\perp}/E_{\perp}
- ع – ع	1.00	15.00	a / a
ςγ —	1,00	13,82	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 10 – Corpo A1 (plinto tipo 9) - Verifica di capacità portante: Approccio 2

Approacia 7: A1+M1+R3			
	Тергос	favorevole	1.00
	Carichi Permanenti	sfavorevole	1 30
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1.50
		favorevole	0.00
	Carichi Variabili	sfavorevole	1.50
		tan o'k	1.00
		C'1	1,00
м	Peremetri genteoniai	C K	1,00
IVI	Parametri geotecilici	$c_{\rm uk}$	1,00
		γ	1,00
D		γ _{qu}	1,60
R	capac	ità portante	2,30
	eccanismo di collasso:	Kottura generale	
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
γ_1 (KIN/III)	19,00	$\gamma_1 (\text{KIN/III})$	19,00
$\gamma_2 (KIN/M)$	21,00	γ_2 (KIN/III)	21,00
$c^{+}(\text{KPa})$	200,00	с (кра)	200,00
$\phi(\tilde{c})$	30	$\phi(\circ)$	30,0
$C_{\rm u}({\rm Kr}a)$	-	$C_{\rm u}$ (KI a)	-
<i>Caratteristick</i>	<i>ne geometriche</i>	<i>Caratteristicn</i>	e geometriche
$\frac{D(\Pi)}{L(m)}$	0,90	D (III)	0,90
$\frac{L (III)}{D (m)}$	0,90	$\frac{L (\text{fff})}{D (\text{m})}$	0,90
D (III)	0,33	D(m)	0,55
		D (III) $L^{1}(m)$	0,90
		L (ffl)	0,90
		<u> </u>	0,0
		m A=i	1,50
		N. (kN)	508.4
		$M_{\rm d}(\rm kN;m)$	0.0
		$M_{\rm r}$ (kN·m) lato B	0,0
		$V_{\rm r}$ (kN) $_{\rm lato}$ L	0,0
		$V_{\rm r}$ (KN) lato B	0,0
		$V_{\rm r}({\rm kN})$	0,0
	Risult	ati della verifica	0,0
N =	18.40	ati ucha verinca	oni
N -	10, 4 0	Azioni	
$N_{\gamma} -$	22,40	$E_{\rm d}(\rm KIN) -$	508,36
$N_{\rm c} =$	30,14	Carico limite	
$s_q =$	1,30	Cond. Drenate	Cond. non Drenate
$s_{\gamma} = 1,30$		q _{lim} (kPa)	q _{lim} (kPa)
s _c = 1,60		2474,28	-
$i_{q} = 0,60$		Resis	tenze
$i_{\gamma} = 0,43$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,58$		$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{\rm q} = 1,00$		2.004,2	-
$d_{y} = 1,00$		Esito dell	a verifica
$d_{\rm c} = 1,00$		Cond. Drenate	Cond. non Drenate
$\xi_{a} = 1.00$		$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}/E_{\rm d}$
ξ=	1.00	3.94	_
ې ج	1.00	verifica soddisfatta	_
$\zeta_c = 1,00$		vormen soudistatta	-

 Tabella 10 – Corpo A1 (plinto tipo 11) - Verifica di capacità portante: Approccio 2

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1.00
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1.30
	a	favorevole	0.00
	Carichi Variabili	sfavorevole	1.30
		tan o'	1.25
			1 25
м	Peremetri genteonioi	C K	1,23
IVI	r arameuri geotecinci	c _{uk}	1,40
		γ	1,00
		γ _{qu}	1,60
R	capac	ità portante	1,80
Me Valari	eccanismo di collasso:	Rottura generale	
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (KN/m)$	19,00	$\gamma_1 (KN/m)$	19,00
$\gamma_2 (KN/m^2)$	21,00	$\gamma_2 (KN/m^2)$	21,00
<i>c</i> '(kPa)	200,00	<i>c</i> '(kPa)	160,00
$\varphi(\circ)$	30	$\phi(^{\circ})$	24,8
	-	C _u (KPa)	-
Caratteristich	ne geometriche	Caratteristiche geometriche	
<u>B (m)</u>	0,50	<u> </u>	0,50
$\frac{L(m)}{D(m)}$	1,00	L(m)	1,00
<i>D</i> (m)	1,00	D (m)	1,00
		<i>B</i> '(m)	0,50
		<i>L</i> '(m)	1,00
		θ(°)	0,0
		т	2,00
		Azi	oni
		$N_{\rm d}$ (KN)	126,5
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (KN·m) lato L	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm KN})_{\rm lato L}$	0,0
	D: 1/	/ r(KN)	0,0
N	Risulta	ati della verifica	
$N_q =$	10,43	Azı	oni
$N_{\gamma} =$	10,56	$E_{\rm d}(\rm kN) =$	126,50
$N_{\rm c} =$	20,42	Carico limite	
$s_q =$	1,00	Cond. Drenate	Cond. non Drenate
$s_{y} = 1.00$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{\rm c} = 1,00$		836,30	-
$i_{q} = 0.51$		Resis	stenze
$i_{\gamma} = 0,36$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} =$	0,45	$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{q} = 1,00$		418.2	-
$d_{y} = 1.00$		-,- Fsito doll	a verifica
$d_{1} = 1.00$		Cond Drenate	Cond non Drenate
$u_{c} = 1,00$		R, $/F$.	R_{\perp}/F .
$\zeta_{q} = 1,00$		n_d / L_d	Λ _d / L _d
$\zeta_{\gamma} =$	1,00	3,31	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 11 – Corpo B1 - Verifica di capacità portante: Approccio 1 – Combinazione 2.

Approacia 2: A1+M1+D2			
	Арргос	favorevole	1.00
	Carichi Permanenti	sfavorevole	1 30
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1.50
		favorevole	0.00
	Carichi Variabili	sfavorevole	1.50
		tan o'	1,00
			1,00
		C _k	1,00
М	Parametri geotecnici	$c_{\rm uk}$	1,00
		γ	1,00
		$\gamma_{\rm qu}$	1,60
R	capac	ità portante	2,30
Me	eccanismo di collasso:	Rottura generale	
Valori ca	aratteristici	Valori d	i progetto
Parametri	i geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> '(kPa)	200,00	<i>c</i> '(kPa)	200,00
φ (°)	30	φ (°)	30.0
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	he geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0.50	<i>B</i> (m)	0.50
<i>L</i> (m)	1.00	<i>L</i> (m)	1.00
<i>D</i> (m)	1,00	<i>D</i> (m)	1.00
	,	<i>B</i> '(m)	0.50
		$L'(\mathbf{m})$	1.00
		θ(°)	0.0
		m	2.00
		Azi	_,,, ,
		$N_{\rm I}$ (kN)	126.5
		M (kN·m) μ μ	0.0
		$M_{\rm r}(\rm kN\cdot m)_{\rm late I}$	0.0
		$V(\mathbf{kN})$	0,0
		V(kN)	0,0
		$V_r(\mathbf{kN})$	0.0
	Risult	ati della verifica	
N -	18.40	ati ucha vermica	ani
<i>I</i> v _q –	18,40	Azioni	
$N_{\gamma} =$	22,40	$E_{\rm d}(\rm kN) = 126,50$	
$N_{\rm c} =$	30,14	Carico limite	
$s_q =$	1,00	Cond. Drenate	Cond. non Drenate
$s_{\gamma} = 1,00$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1,00$		1272,81	-
$i_{q} = 0.51$		Resis	stenze
$i_{\gamma} = 0.36$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0.48$		$R_{\rm d}(\rm kN)$	$R_{\rm d}$ (kN)
$d_{a} = 1.00$		636.4	-
d = 1.00		F _!/. 1 D	
$u_{\gamma} = 1,00$		Esito dell	<i>u verijicu</i>
$a_{\rm c} = 1,00$		Cona. Drenale	Cona. non Drenaie
$\xi_{q} = 1,00$		$K_{\rm d}$ / $E_{\rm d}$	$K_{\rm d}/E_{\rm d}$
$\xi_{\gamma} =$	1,00	5,03	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 12 – Corpo B1 - Verifica di capacità portante: Approccio 2.

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1.00
	Carichi Permanenti	favorevole	0,00
Α	non strutturali	sfavorevole	1,30
	Q 11 W 11	favorevole	0,00
	Carichi Variabili	sfavorevole	1,30
		tan φ'_k	1,25
		<i>c</i> ' _k	1.25
м	Parametri geotecnici	C uk	1 40
	r urunneur geotteenner	v uk	1,10
			1,00
R	canac	Iqu ità portante	1,00
Me	eccanismo di collasso:	Rottura generale	1,00
Valori ca	ratteristici	Valori d	i progetto
Parametri	geotecnici	Parametri	geotecnici
γ_1 (kN/m ³)	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> '(kPa)	200.00	c'(kPa)	160.00
φ (°)	30	φ (°)	24,8
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	ne geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0,50	<i>B</i> (m)	0,50
<i>L</i> (m)	1,00	<i>L</i> (m)	1,00
<i>D</i> (m)	1,00	<i>D</i> (m)	1,00
		<i>B</i> '(m)	0,50
		L'(m)	1,00
		θ (°)	0,0
		т	2,00
		Azi	ioni
		$N_{\rm d}$ (kN)	112,3
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}({\rm kN})_{\rm lato L}$	0,0
		$V_{\rm r}(\rm kN)$	0,0
	Risult	ati della verifica	
$N_q =$	10,43	Azioni	
$N_{\gamma} =$	10,56	$E_{\rm d}(\rm kN)$ =	112,30
$N_{\rm c} =$	20,42	Carico) limite
$s_q =$	1,00	Cond. Drenate	Cond. non Drenate
$s_{x} = 1.00$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1.00$		836,30	-
$i_{g} = 0.51$		Resis	stenze
$i_{\gamma} = 0,36$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,45$		$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$
$d_{q} = 1,00$		418,2	-
$d_{u} = 1.00$		Esito del	la verifica
$d_{\gamma} = 1.00$		Cond. Drenate	Cond. non Drenate
د در در	1.00	R_{1}/E_{2}	R_{\perp}/E_{\perp}
$S_q = 1,00$		2 7 C	n _a , <i>D</i> _d
$\zeta_{\gamma} -$	1,00	3,/2	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 13 – Corpo B2 - Verifica di capacità portante: Approccio 1 – Combinazione 2.

Approacie 7: A1+M1+D2			
	Арргос	favorevole	1.00
	Carichi Permanenti	sfavorevole	1,00
	Carichi Permanenti	favorevole	0.00
Α	non strutturali	sfavorevole	1.50
		favorevole	0.00
	Carichi Variabili	sfavorevole	1.50
		tan o'	1,00
			1,00
		C _k	1,00
М	Parametri geotecnici	$c_{ m uk}$	1,00
		γ	1,00
		$\gamma_{\rm qu}$	1,60
R	capac	ità portante	2,30
Me	eccanismo di collasso:	Rottura generale	
Valori ca	aratteristici	Valori di	i progetto
Parametri	i geotecnici	Parametri	geotecnici
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00
<i>c</i> '(kPa)	200,00	<i>c</i> '(kPa)	200,00
φ (°)	30	0 (°)	30.0
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-
Caratteristich	he geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0.50	<i>B</i> (m)	0.50
<i>L</i> (m)	1.00	<i>L</i> (m)	1.00
<i>D</i> (m)	1.00	<i>D</i> (m)	1.00
	,	<i>B</i> '(m)	0.50
		$L'(\mathbf{m})$	1.00
		θ(°)	0.0
		m	2,00
		Azi	_,
		$N_{\rm I}$ (kN)	112.3
		M (kN·m) μ μ	0.0
		$M_{\rm F}({\rm kN}\cdot{\rm m})_{\rm late I}$	0.0
		$V(\mathbf{kN})$	0.0
		$V(\mathbf{kN})$	0.0
		$V_r(kN)$	0.0
	Risult	ati della verifica	
N -	18.40		'ani
1v _q –	10,40	Azioni	
$N_{\gamma} =$	22,40	$E_{\rm d}(\rm kN) = 112,30$	
$N_{c} =$	30,14	Carico limite	
$s_q =$	1,00	Cond. Drenate	Cond. non Drenate
$s_{\gamma} = 1,00$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1,00$		1272,81	-
$i_{a} =$	0,51	Resis	tenze
$i_{\gamma} = 0.36$		Cond. Drenate	Cond. non Drenate
$i_{\rm c} = 0,48$		$R_{\rm d}$ (kN)	$R_{\rm d}$ (kN)
$d_{a} = 1.00$		636.4	-
d = 1.00		En:24 J-1	l a nouifica
$u_{\gamma} = 1,00$		Esito dell	a verifica
$a_{\rm c} = 1,00$		Cona. Drenale	Conu. non Drenaie
$\xi_{q} = 1,00$		$K_{\rm d}$ / $E_{\rm d}$	$K_{\rm d}/E_{\rm d}$
$\xi_{\gamma} =$	1,00	5,67	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 14 – Corpo B2 - Verifica di capacità portante: Approccio 2.

Approcesso 1 - Combinazione 2: A2+M2+R2			
		favorevole	1,00
	Carichi Permanenti	sfavorevole	1.00
	Carichi Permanenti	favorevole	0,00
A	non strutturali	sfavorevole	1,30
		favorevole	0,00
	Carıchi Variabili	sfavorevole	1,30
		$\tan \phi'_{\nu}$	1,25
		C'1	1.25
м	Paramatri gantanini	C K	1,25
171	r arameuri geotechici	C uk	1,40
		γ	1,00
D		γ _{qu}	1,60
K	capaci	ta portante	1,80
Volari as	eccanismo di collasso:	Rottura generale	muo cotto
Valori ca	ratteristici	Valori di	progetto
Parametri	geotecnici	Parametri	geotecnici
$\gamma_1 (\text{KIN/III})$	19,00	$\gamma_1 (\text{KIN/III})$	19,00
γ_2 (KIN/III)	21,00	$\gamma_2 (\text{KIN/III})$	21,00
c'(kPa)	200,00	$c'(\mathbf{kPa})$	160,00
$\varphi(\circ)$	30	$\phi(\circ)$	24,8
	-		-
Caratteristich	ne geometriche	Caratteristich	e geometriche
<i>B</i> (m)	0,55	<i>B</i> (m)	0,55
$\frac{L(m)}{D(m)}$	1,00	L(m)	1,00
D (III)	0,60		0,60
		$B^{+}(\mathbf{m})$	0,55
		<i>L</i> '(m)	1,00
		θ(°)	0,0
		m	2,00
		Azi	oni
		$N_{\rm d}$ (kN)	90,6
		$M_{\rm r}$ (kN·m) _{lato B}	0,0
		$M_{\rm r}$ (kN·m) _{lato L}	0,0
		$V_{\rm r}$ (kN) _{lato B}	0,0
		$V_{\rm r}$ (KN) _{lato L}	0,0
		$V_{\rm r}(\rm KN)$	0,0
	Risult	ati della verifica	. <u>.</u>
$N_q =$	10,43	Azi	oni
$N_{\gamma} =$	10,56	$E_{\rm d}({\rm kN}) = 90,59$	
$N_{\rm c} =$	20,42	Carico limite	
$s_q =$	1,00	Cond. Drenate	Cond. non Drenate
$s_{y} = 1.00$		q _{lim} (kPa)	q _{lim} (kPa)
$s_{c} = 1.00$		837,42	-
$i_{q} = 0,51$		Resis	tenze
$i_{\gamma} = 0,36$		Cond. Drenate	Cond. non Drenate
$i_{c}^{i} =$	0,45	$R_{\rm d}$ (kN)	$R_{\rm d}(\rm kN)$
$d_{a} = 1.00$		460.6	-
d = 1.00		Esito dall	a vorifica
$d_{\gamma} = 1.00$		Cond Drenate	Cond non Drenate
$\mu_{c} = 1,00$ $\xi = 1.00$		R, $/F$.	R_{\perp}/F_{\perp}
$\zeta_{q} = 1.00$		5 00	n _d , L _d
$\zeta_{\gamma} =$	1,00	5,08	-
$\xi_{\rm c} = 1,00$		verifica soddisfatta	-

 Tabella 15 – Corpo C (trave 55x60 cm)- Verifica di capacità portante: Approccio 1 – Comb. 2

Approceio 2: A1+M1+R3						
	1100	favorevole 1.00				
	Carichi Permanenti	sfavorevole	1 30			
	Carichi Permanenti	favorevole	0.00			
Α	non strutturali	sfavorevole	1 50			
	non strutturun	favorevole	0.00			
	Carichi Variabili	sfavorevole	1 50			
		tan o'	1,00			
		c'	1,00			
м	D (') ' '		1,00			
N	Parametri geotecnici	$c_{\rm uk}$	1,00			
		γ	1,00			
		$\gamma_{ m qu}$	1,60			
R	capaci	tà portante 2,30				
Me	eccanismo di collasso:	Rottura generale				
Valori ca	ratteristici	Valori di	i progetto			
Parametri	geotecnici	Parametri	geotecnici			
$\gamma_1 (kN/m^3)$	19,00	$\gamma_1 (kN/m^3)$	19,00			
$\gamma_2 (kN/m^3)$	21,00	$\gamma_2 (kN/m^3)$	21,00			
<i>c</i> ' (kPa)	200,00	<i>c</i> ' (kPa)	200,00			
φ (°)	30	φ (°)	30,0			
$C_{\rm u}$ (kPa)	-	$C_{\rm u}$ (kPa)	-			
Caratteristich	ne geometriche	Caratteristich	e geometriche			
<i>B</i> (m)	0,55	<i>B</i> (m)	0,55			
<i>L</i> (m)	1,00	<i>L</i> (m)	1,00			
<i>D</i> (m)	0,60	<i>D</i> (m)	0,60			
		<i>B</i> '(m)	0,55			
		<i>L</i> '(m)	1,00			
		θ (°)	0,0			
		т	2,00			
		Azi	oni			
		$N_{\rm d}$ (kN)	90,6			
		$M_{\rm r}$ (kN·m) _{lato B}	0,0			
		$M_{\rm r}$ (kN·m) _{lato L}	0,0			
		$V_{\rm r}$ (kN) _{lato B}	0,0			
		$V_{\rm r}$ (kN) _{lato L}	0,0			
		$V_{\rm r}({\rm kN})$	0,0			
	Risult	ati della verifica				
$N_q =$	18,40	Azioni				
$N_{\gamma} =$	22,40	$E_{\rm d}(\rm kN) = 90,59$				
$N_{c} =$	30,14	Carico limite				
$s_{a} =$	1.00	Cond. Drenate	Cond. non Drenate			
ч с =	1.00	a. (kPa)	a. (kPa)			
$s_{\gamma} =$	1,00	1274.66	q _{lim} (H u)			
$i_c = 0.51$		12/4,00				
$i_q = i_{i_q}$	0.36	Cond Drenate	Cond non Drenate			
i_{γ}	0,30	$R_{1}(kN)$	$R_{1}(kN)$			
$\frac{l_c}{d}$	1.00	$T_{d}(\mathbf{k} \mathbf{t})$	<i>π_d</i> (kit)			
u_{q} –	1,00	- /01,1 -				
$d_{\gamma} =$	1,00	Esito della verifica				
$d_{\rm c} =$	1,00	Cond. Drenate	Cond. non Drenate			
$\xi_q =$	1,00	$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}$ / $E_{\rm d}$			
$\xi_{\gamma} =$	1,00	7,74	-			
$\xi_c =$	1,00	verifica soddisfatta	-			

 Tabella 16 – Corpo C (trave 55x60 cm) - Verifica di capacità portante: Approccio 2.

A Grichi Permanenti Garichi Permanenti non strutturali favorevole 1,00 Garichi Permanenti non strutturali favorevole 0,00 Carichi Variabili favorevole 0,00 Carichi Variabili favorevole 0,00 Carichi Variabili favorevole 0,00 Stavorevole 1,30 favorevole M Parametri geotecnici c_{uk} 1,40 γ 1,00 γ 1,00 γ 1,00 γ 1,00 γ 1,00 γ 1,00 γ_u 1,60 γ_u 1,80 Meccanismo di collasso: Rottura generale Valori caratteristici Valori di progetto 19,00 γ_i (kNm') 19,00 γ_i (kNm') 19,00 γ_i (kNm) 21,00 γ_i (kNm') 21,00 φ^i (Na) 200,00 c' (kPa) 160,00 φ^i (P) 30 φ^i (P) 24,8 Caratteristiche geometriche Caratteristiche geometriche Maio	Approccio 1 - Combinazione 2: A2+M2+R2						
A Carichi Permanenti non strutturali Carichi Permanenti non strutturali Carichi Variabili sfavorevole favorevole 1,00 M Parametri geotecnici c_{uk} 1,100 M Parametri geotecnici c_{uk} 1,40 Y 1,00 Y 1,00 R caracità portante 1,80 Meccanismo di collasso: Rottura generale 1,80 Valori caratteristici Parametri geotecnici Parametri geotecnici Parametri geotecnici Parametri geotecnici Parametri geotecnici Y ₁ (KNm [*]) 19,00 Y ₁ (KNm [*]) 19,00 Y ₁ (KNm [*]) 21,00 Y ₂ (KNm [*]) 21,00 C ₄ (kPa) - C ₄ (kPa) 160,00 Q [*] (*) 30 Q [*] (*) 24,8 C _u (kPa) - C ₄ (kPa) - Caratteristiche geometriche Caratteristiche geometriche Mathematical scienci B (m) 0,40 B (m) 0,40 L (m) 1,00 L (m) 1,00 M ₄ (kN) M [*] 1,8 M			favorevole 1.00				
A Carichi Permanenti non strutturali favorevole 0,00 Carichi Variabili favorevole 1,30 Carichi Variabili favorevole 0,00 Savorevole 1,30 M Parametri geotecnici c_k 1,25 M Parametri geotecnici c_{ak} 1,40 γ 1,00 γ_{qu} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici $\gamma_u(kNm)$ 19,00 $\gamma_u(kNm)^{-1}$ 19,00 $\gamma_u(kNm)^{-1}$ 21,00 $\gamma_c(kPa)$ 160,00 ϕ (°) 30 ϕ (°) 24,8 $C_w(kPa)$ - $C_w(kPa)$ - Caratteristiche geometriche Caratteristiche geometriche B (m) 0,40 L (m) 1,00 D (m) 0,60 - D (m) 0,60 D (m) 0,00 $K_w(kNm)$		Carichi Permanenti	sfavorevole	1.00			
A non strutturali sfavorevole 1,30 Carichi Variabili favorevole 0,00 sfavorevole 1,30 tan q_1 1,25 c_k 1,25 c_k 1,25 c_k 1,40 γ 1,00 γ_{qu} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale 1,80 Valori caratteristici Valori di progetto Parametri geotecnici $Parametri geotecnici$ $Parametri geotecnici$ $Parametri geotecnici$ γ_i (KNm [*]) 19,00 γ_i (KNm [*]) 19,00 γ_i (KNm [*]) 21,00 q_i (KNm [*]) 21,00 γ_i (KNm [*]) 21,00 q_i (KNm [*]) 21,00 γ_i (KNm [*]) 19,00 q_i (KNm [*]) 10,00 Q_i (KNm [*]) 10,00 Q_i (KNm [*]) 0,40 B (m) 0,40		Carichi Permanenti	favorevole	0,00			
M Carichi Variabili favorevole 0,00 $favorevole$ 1,30 $favorevole$ 1,25 c'_k 1,25 c'_k 1,25 c'_k 1,26 $rametri goot rametri goot Y_{qu} 1,60 Parametri geotecnici Valori di progeto Parametri geotecnici Parametri geotecnici Y_1(KNm^*) 19,00 \gamma_1(KNm^*) \gamma_2(kNm^*) 21,00 \gamma_2(kNm^*) c'(kPa) 200,00 c'(kPa) C_u(kPa) - C_u(kPa) C_u(kPa) - Caratteristiche geometriche Caratteristiche geometriche B (m) 0,40 B (m) 0,40 \mu (m) 1,00 D (m) 0,60 <$	Α	non strutturali	sfavorevole	1,30			
Carichi Variabili $sfavorevole 1,30 M Parametri geotecnici tan \phi_k 1,25 c_k 1,40 \gamma 1,00 \gamma_{au} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori caratteristici Parametri geotecnici Parametri geotecnici P_1 (kN/m3) 19,00 \gamma_1 (kN/m3) 19,00 \gamma_i (kN/m3) 21,00 \gamma_i (kN/m3) 21,00 \phi (°) 30 \phi (°) 24,8 C_u (kPa) 200,00 c' (kPa) 160,00 \phi (°) 30 \phi (°) 24,8 C_u (kPa) - C_u (kPa) - Caratteristiche geometriche Caratteristiche geometriche B (m) 0,40 L (m) 1,00 L (m) 1,00 D (m) D (m) 0,60 D (m) 0,60 M_n (kN'm) hab B 0,0 M_r (kN'm) hab B 0,0 M_n (kN) $			favorevole	0.00			
M Parametri geotecnici $tan \varphi_k$ $1,25$ C_k $1,25$ c_k $1,40$ γ $1,00$ γ_{qu} $1,60$ R capacità portante $1,80$ Meccanismo di collasso: Rottura generale Valori di progetto Parametri geotecnici Parametri geotecnici $Parametri geotecnici$ γ (kN/m ³) $21,00$ γ_2 (kN/m ³) $21,00$ γ_2 (kN/m ³) $21,00$ γ_2 (kN/m ³) $21,00$ φ (kPa) $200,00$ $c^*(kPa)$ $160,00$ φ (°) 30 φ (°) $24,8$ C_u (kPa) $ C_u$ (kPa) $ M_u$ (h_0 B (m) $0,40$ $ M_u$ (h_0 B (m) $0,40$ <		Carichi Variabili	sfavorevole	1.30			
M Parametri geotecnici c_k 1,25 c_{ak} 1,40 γ 1,00 γ_{au} 1,60 R capacità portante Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici γ_1 (kN/m [*]) 19,00 γ_1 (kN/m [*]) 19,00 γ_1 (kN/m [*]) 21,00 γ_2 (kN/m [*]) 21,00 γ_2 (kN/m [*]) 21,00 φ (°) 30 φ (°) 24,8 C C (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 2 C (kPa) 2 0,00 φ (°) 30 φ (°) 0,0 μ (N) 0,40 L (m) 1,00 φ (R) φ (R) φ (R) φ (R) φ (kN)			tan o'	1.25			
M Parametri geotecnici i_{L} i_{L} i_{L} R cak 1,40 Yau 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori di progetto 1,80 Parametri geotecnici Parametri geotecnici 19,00 γ_1 (kNm ³) 19,00 γ_1 (kN/m ³) 21,00 γ_2 (kN/m ³) 21,00 $\varphi(^\circ)$ 30 $\varphi(^\circ)$ 24,8 C_u (kPa) - C_u (kPa) - Caratteristiche geometriche Caratteristiche geometriche $Caratteristiche geometriche B (m) 0,40 B (m) 0,40 L (m) 1,00 L (m) 1,00 M_q (kN) M_q (kN) M_7.8 M_q (kN) $			<i>C</i> '1	1.25			
M Inducting bottentic $\frac{1}{y_{au}}$ $1,40$ γ 1.00 γ_{au} $1,60$ R capacità portante $1,80$ Meccanismo di collasso: Rottura generale 180 Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici γ_1 (kN/m ³) 19,00 γ_2 (kN/m ³) 100,00 φ (^c) 30 φ (^c) γ (kN/m ³) 21,00 c^{c} (kPa) 200,00 c^{c} (kPa) C_u (kPa) - C_u (kPa) $ C_u$ (kPa) - Cur (kPa) - C_u (kPa) $ C_u$ (kPa) - Caratteristiche geometriche Caratteristiche geometriche B (m) D (m) $0,60$ D (m) $0,60$ D (m) $0,00$ M_c (kN) $47,8$ M_c (kN) M_c (kN) $47,8$ M_c (kN) M_c (kN) $0,00$ V_r (kN) lino B <th>м</th> <td>Parametri geotecnici</td> <td>C i</td> <td>1,25</td>	м	Parametri geotecnici	C i	1,25			
γ_{qu} 1,00 γ_{qu} 1,60 R capacità portante 1,80 Meccanismo di collasso: Rottura generale Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m') 19,00 γ_1 (kN/m') 19,00 γ_2 (kN/m') 21,00 γ_2 (kN/m') 21,00 c' (kPa) 200,00 c' (kPa) 160,00 ϕ (°) 30 ϕ (°) 24,8 C_u (kPa) 200,00 c' (kPa) 160,00 ϕ (°) 30 ϕ (°) 24,8 C_u (kPa) 0,40 B (m) 0,40 B (m) 0,40 L (m) 1,00 L (m) 1,00 L (m) 1,00 D (m) 0,60 D' (m) 0,00 M_t (kN) 47.8 M_1 (kN) 47.8 M_1 (kN) 47.8 M_1 (kN) $0,0$ $M = 10,65$ Kisultati della verifica M_2 (kN) $0,0$	141	i arametri geoteemer	c _{uk}	1,40			
Name Type 1,60 Meccanismo di collasso: Rottura generale Valori di progetto Parametri geotenici Parametri geotenici Parametri geotenici Parametri geotenici Parametri geotenici Parametri geotenici Y1 (kN/m [*]) 19,00 Y1 (kN/m [*]) 19,00 γ_2 (kN/m [*]) 21,00 γ_2 (kN/m [*]) 21,00 c' (kPa) 200,00 c' (kPa) 160,00 ϕ (°) 30 ϕ (°) 2.4.8 C u(kPa) - C u(kPa) - Caratteristiche geometriche Caratteristiche geometriche B (m) 0,40 B (m) 0,60 D (m) 0,60 D (m) 0,60 D (m) 0,60 B (m) 0,60 D (m) 0,00 $M_e(kN)$ 47,8 M_e(kN) 47,8 M_e(kN) 47,8 M_e(kN) 0,0 V r (kN) lato B 0,0 V r (kN) lato B 0,0 V r (kN) lato B 0,0 V r (kN) lato B 0,0 V = 10,56<			γ	1,00			
R capacita portante 1,80 Meccanismo di collasso: Rottura generale Valori caratteristici Valori di progetto Parametri geotecnici Parametri geotecnici $Parametri geotecnici$ γ_1 (kN/m ³) 19,00 γ_1 (kN/m ³) 19,00 γ_2 (kN/m ³) 21,00 γ_2 (kN/m ³) 21,00 c' (kPa) 200,00 c' (kPa) 160,00 φ (°) 30 φ (°) 24,8 C u (kPa) - C u (kPa) - C aratteristiche geometriche Caratteristiche geometriche Caratteristiche geometriche C u (kPa) C (m) 0,40 B (m) 0,40 L (m) 1,00 D (m) 0,60 D (m) 0,60 m A_200 M (kN) 47,8 M 0,0 M A_100 M (kN) Intit della verifica 0,0 M M_1 (kN'm) lato B 0,0 V (kN) Intit della verifica M 0,0 M M_1 (kN'm) lato B 0,0	D		γ _{qu}	1,60			
Valori caratteristici Valori di rogetto Parametri geotecnici Parametri geotecnici Parametri geotecnici γ_1 (kN/m ²) 19,00 γ_1 (kN/m ²) 19,00 γ_2 (kN/m ²) 21,00 γ_2 (kN/m ²) 21,00 c' (kPa) 200,00 c' (kPa) 160,00 φ (°) 30 φ (°) 24,8 C_u (kPa) - C_u (kPa) - Caratteristiche geometriche Caratteristiche geometriche B B (m) 0,40 B (m) 0,40 L (m) 1,00 L (m) 1,00 D (m) 0,60 D (m) 0,60 B'(m) 0,40 L'(m) 1,00 M(kN) M(kN) 47,8 M(kN) 0,0 M(kN) 0,0 M(kN) M(kN) 0,0 M(kN) M (kN) 10,56 E (kN) = 47,84 M (= 20,42 Cariot limite Cariot limite S (= 1,00 Cond. Drenate Cond. non Drenate </th <th>R</th> <th>capaci</th> <th>ta portante</th> <th>1,80</th>	R	capaci	ta portante	1,80			
Valor relation Valor de progeno Parametri geotecnici Parametri geotecnici γ_1 (kN/m²) 19,00 γ_2 (kN/m²) 21,00 γ_2 (kN/m²) 21,00 c' (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 200,00 c' (kPa) 20,00 c' (kPa) - C_u (kPa) - D (m) 0,40 B (m) 0,40 L' (m) 1,00 D (m) 0,60 B' (m) 0,40 L' (m) 1,00 Q'° (kN) M_{2} M_{q} (kN) M_{1} M_{q} (kN) M_{1}	Valari aa	rottoristici	Kottura generale Valari di	progette			
$\begin{array}{ c c c c c c } \hline Parametry geotecnect & Parametry geotecnect & P.00 & $\gamma_1(kN'm')$ & 19.00 & $\gamma_1(kN'm')$ & 19.00 & $\gamma_2(kN'm')$ & $21,00$ & $\gamma_2(kN'm')$ & $160,00$ & $\varphi(^\circ)$ & $24,8$ & $\gamma_1(kN)$ & $0,40$ & $L'(m)$ & $1,00$ & $L(m)$ & $1,00$ & $L(m)$ & $1,00$ & $L'(m)$ & $1,00$ & $L'(m)$ & $1,00$ & $L'(m)$ & $1,00$ & $0(^\circ)$ & $0,60$ & $B'(m)$ & $0,40$ & $L'(m)$ & $1,00$ & $0(^\circ)$ & $0,0$ & $M_1(kN'm)$ & $10,0$ & $0(^\circ)$ & $0,0$ & $M_1(kN'm)$ & $10,0$ & $0(^\circ)$ & $0(^\circ)$ & $0,0$ & $M_1(kN'm)$ & $10,0$ & $0(^\circ)$ & $M_1(kN'm)$ & $10,0$ & $0(^\circ)$ & $0(^\circ)$ & $M_1(kN'm)$ & $10,0$ & $M_1(kN'm)$ & $M_2(kN'm)$ & $M_1(kN'm)$ & $M_2(kN'm)$ & $M_1(kN'm)$ & $M_2(kN'm)$ & $M_2(kN'm)$ & $M_1(kN'm)$ & $M_2(kN'm)$ & $M_2(k$	Valori ca		Valori di				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parametri		Parametri				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	γ_1 (KIN/III)	19,00	$\gamma_1 (\text{KIN/III})$	19,00			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ_2 (KIN/III)	21,00	$\gamma_2 (\text{KIN/III})$	21,00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>c</i> (kPa)	200,00	\mathcal{C} (KPa)	160,00			
Cu (Rth) Cu (Rth) Caratteristiche geometriche Caratteristiche geometriche Caratteristiche geometriche B (m) 0,40 B (m) 0,40 L (m) 1,00 L (m) 1,00 D (m) 0,60 D (m) 0,60 B (m) 0,40 L (m) 1,00 D (m) 0,60 D (m) 0,60 B (m) 0,40 L (m) 1,00 B (m) 0,40 L (m) 1,00 B (m) 0,60 D (m) 0,60 B (m) 0,60 D (m) 0,00 M (kN) A7,8 M (kN) A7,8 M (kN) Iato B 0,0 M (kN'm) Iato L 0,0 V r (kN) Iato L 0,0 V r (kN) Iato L 0,0 V r (kN) Iato L 0,0 V r (kN) 0,0 Kisultati della verifica Azioni K d (kN) A d (m) N q = 10,43 Azioni E d (kN) = 47,84 M (Pa) N g = 1,00 Cond. Drenate	$\varphi(r)$	30	(Γ)	24,8			
Cardineristiche geometriche Cardineristiche geometriche B (m) 0,40 B (m) 0,40 L (m) 1,00 L (m) 1,00 D (m) 0,60 D (m) 0,60 B (m) 0,60 D (m) 0,00 B (m) 0,0 M (kN) 47.8 M (kN) 47.8 M (kN) 0,0 M (kN) Iato E 0,0 M (kN) V (kN) Iato E 0,0 M (kN) V (kN) Iato E 0,0 M (kN) M (kN) Iato E	Counttonistic	-	Cauattaniatial	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	R (m)		P (m)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{D(\Pi)}{L(m)}$	0,40	$\frac{D}{L}$ (m)	0,40			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{L (III)}{D (m)}$	1,00	$\frac{L (III)}{D (m)}$	1,00			
B (ff) 0,40 L' (m) 1,00 θ (°) 0,0 m 2,00 Azioni Azioni N _d (kN) 47,8 M _r (kNm) lato B 0,0 M _r (kN) 47,8 M _r (kN) 47,8 M _r (kN) 0,0 V _r (kN) lato B 0,0 V _r (kN) lato L 0,0 V _r (kN) ato L 0,0 Sc 0,0 V _r (kN) ato L 0,0 V _r (kN) ato L 0,0 Sc 0,0 Sc 0,0 Sc 1,00 Sc	D (III)	0,00	D'(m)	0,00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			B (III)	0,40			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			L (III)	1,00			
M 2,00 $Azioni$ $Azioni$ N_d (kN) $47,8$ M_r (kN·m) lato B $0,0$ W_r (kN·m) lato L $0,0$ V_r (kN) lato B $0,0$ V_r (kN) lato L $0,0$ V_r (kN) lato L $0,0$ V_r (kN) $Azioni$ $S_q = 1,00$ Cond. Drenate Cond. non Drenate $i_q = 1,00$ R_d / E_d			0()	0,0			
N_d (kN) $47,8$ M_r (kN·m) $_{lato B}$ 0,0 M_r (kN·m) $_{lato L}$ 0,0 M_r (kN·m) $_{lato L}$ 0,0 V_r (kN) $_{lato B}$ 0,0 V_r (kN) $_{lato L}$ 0,0 V_r (kN) S_c 0,0 $S_c = 1,00$ Cond. Drenate Cond. non Drenate $i_q = 0,51$ Resistenze - $i_q = 0,65$ R_d (kN) R			<i>m</i>	2,00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			A21	0ni 17.8			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$M_{\rm d}({\rm kn})$	47,8			
M_r (RV II) lato L 0,0 V_r (RN) lato B 0,0 V_r (RN) lato L 0,0 V_r (RN) lato L 0,0 V_r (RN) 0,0 V_r (RN) V_r (RN) V_r (RN) V_r (RN) R_d (RN) R_d (RN) R_d (RN) $S_c = 1,00$ $Cond.$ Drenate Cond. non Drenate $i_q = 0,51$ R_d (RN) R_d (RN) $d_q = 1,00$ R_d (RN) R_d (RN) $d_c = 1,00$ $Cond.$ Drenate Cond. n			$M_{\rm r}$ (kN III) lato B	0,0			
$V_r(kN)_{lato B}$ 0,0 $V_r(kN)_{lato L}$ 0,0 $V_r(kN)$ 0,0 $Risultati della verifica$ 0,0 $N_q = 10,43$ A_{zioni} $N_q = 10,56$ $E_d(kN) = 47,84$ $N_c = 20,42$ Carico limite $s_q = 1,00$ Cond. Drenate Cond. non Drenate $s_q = 1,00$ $834,08$ - $i_q = 0,51$ Resistenze - $i_q = 0,51$ $Resistenze$ - $i_q = 0,45$ $R_d(kN)$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ 333,6 - - $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d/E_d R_d/E_d R_d/E_d $\xi_r = 1,00$ $e_{0,97$ - - $\xi_$			$M_{\rm r}$ (KIN III) lato L	0,0			
$V_r(Nr)_{lato L}$ 0,0 Risultati della verifica $N_q = 10,43$ Azioni $N_q = 10,56$ $E_d(N) = 47,84$ $N_c = 20,42$ Carico limite $s_q = 1,00$ Cond. Drenate Cond. non Drenate $s_q = 1,00$ Cond. Drenate Cond. non Drenate $s_q = 1,00$ Cond. Drenate Cond. non Drenate $s_q = 1,00$ Resistenze - $i_q = 0,51$ Resistenze - $i_q = 0,51$ Resistenze - $i_q = 0,45$ R_d(kN) R_d(kN) $d_q = 1,00$ Sa33,6 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $d_q = 1,00$ R_d(kN) R_d(kN) $d_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ K_g / E_d R_g / E_d $\xi_q = 1,00$ K_g / E_d R_g / E_d $\xi_q = 1,00$ K_g / E_d R_g / E_d			$V_{\rm r}$ (KN) lato B	0,0			
Risultati della verifica Azioni $N_q = 10,43$ $Azioni$ $N_q = 10,56$ $E_d(kN) = 47,84$ $N_c = 20,42$ Carico limite $s_q = 1,00$ $Cond. Drenate$ $Cond. non Drenate$ $s_q = 1,00$ $Q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_c = 1,00$ $834,08$ - $i_q = 0,51$ $Resistenze$ - $i_q = 0,51$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ $333,6$ - $d_q = 1,00$ $Cond. Drenate$ $Cond. non Drenate$ $d_q = 1,00$ R_d/E_d R_d/E_d $d_q = 1,00$ $Cond. Drenate$ $Cond. non Drenate$ $\xi_q = 1,00$ $Cond. Drenate$ $Cond. non Drenate$ $\xi_q = 1,00$ R_d/E_d R_d/E_d $\xi_r = 1,00$ e_{97} - $\xi_c = 1,00$ verifica soddisfatta -			$V_{\rm r}({\bf KN})_{\rm lato L}$	0,0			
Nq = 10,43 Azioni $N_q = 10,56$ $E_d(kN) = 47,84$ $N_c = 20,42$ Carico limite $s_q = 1,00$ Cond. Drenate Cond. non Drenate $s_q = 1,00$ $Q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_c = 1,00$ 834,08 - $i_q = 0,51$ Resistenze - $i_q = 0,51$ Resistenze - $i_q = 0,45$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ 333,6 - $d_q = 1,00$ Cond. Drenate Cond. non Drenate $d_c = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ Prenate Cond. non Drenate $\xi_q = 1,00$ Verifica soddisfatta -		Ricult	ati dolla varifica	0,0			
$N_q = 10,43$ A_{2000} $N_q = 10,56$ $E_d(kN) = 47,84$ $N_c = 20,42$ Carico limite $s_q = 1,00$ Cond. Drenate Cond. non Drenate $s_q = 1,00$ $Cond.$ Drenate Cond. non Drenate $s_c = 1,00$ 834,08 - $i_q = 0,51$ Resistenze Cond. non Drenate $i_q = 0,51$ Resistenze Cond. non Drenate $i_q = 0,36$ Cond. Drenate Cond. non Drenate $i_q = 0,45$ R_d(kN) R_d(kN) $d_q = 1,00$ Sign of the della verifica $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ Verifica soddisfatta -	N =	10.43		oni			
$N_{\gamma} = 10,56$ $E_{d}(KN) = 47,84$ $N_{c} = 20,42$ Carico limite $s_{q} = 1,00$ $Cond. Drenate$ $Cond. non Drenate$ $s_{\gamma} = 1,00$ $q_{lim}(kPa)$ $q_{lim}(kPa)$ $s_{c} = 1,00$ $834,08$ - $i_{q} = 0,51$ Resistenze $i_{q} = 0,45$ $Cond. Drenate$ $i_{q} = 1,00$ $333,6$ $d_{q} = 1,00$ $Cond. Drenate$ $d_{c} = 1,00$ $Cond. Drenate$ $\xi_{q} = 1,00$ R_{d}/E_{d} $k_{q} = 1,00$ R_{d}/E_{d} $R_{d} = 1,00$ $R_{d} = 1,$	$N_q = N_1$	10,43	Azioni				
$N_c = 20,42$ Carico limite $s_q = 1,00$ Cond. DrenateCond. non Drenate $s_{\gamma} = 1,00$ q_{lim} (kPa) q_{lim} (kPa) $s_c = 1,00$ $834,08$ - $i_q = 0,51$ Resistenze $i_q = 0,36$ Cond. Drenate $i_c = 0,45$ R_d (kN) $d_q = 1,00$ $333,6$ $d_r = 1,00$ Cond. Drenate $\xi_q = 1,00$ Cond. Drenate $\xi_q = 1,00$ R_d / E_d $\xi_r = 1,00$ R_d / E_d $\xi_r = 1,00$ Verifica soddisfatta	$N_{\gamma} =$	10,56	$E_{\rm d}(\rm kN) = 47,84$				
$s_q = 1,00$ Cond. DrenateCond. non Drenate $s_{\gamma} = 1,00$ q_{lim} (kPa) q_{lim} (kPa) $s_c = 1,00$ $834,08$ - $i_q = 0,51$ Resistenze $i_{\gamma} = 0,36$ Cond. Drenate $i_c = 0,45$ R_d (kN) $d_q = 1,00$ $333,6$ $d_{\gamma} = 1,00$ Esito della verifica $\xi_q = 1,00$ R_d / E_d $\xi_{\gamma} = 1,00$ R_d / E_d $\xi_{\gamma} = 1,00$ k_d / E_d $\xi_{\gamma} = 1,00$ $k_{\gamma} / E_{\gamma} / E_{\gamma}$	$N_{c} =$	20,42	Carico	limite			
$s_{\gamma} = 1,00$ q_{lim} (kPa) q_{lim} (kPa) $s_{c} = 1,00$ 834,08 - $i_{q} = 0,51$ Resistenze $i_{\gamma} = 0,36$ Cond. Drenate Cond. non Drenate $i_{c} = 0,45$ R_{d} (kN) R_{d} (kN) $d_{q} = 1,00$ 333,6 - $d_{c} = 1,00$ Cond. Drenate Cond. non Drenate $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{\gamma} = 1,00$ 6,97 - $\xi_{c} = 1,00$ verifica soddisfatta -	$s_q =$	1,00	Cond. Drenate	Cond. non Drenate			
$s_c = 1,00$ 834,08 - $i_q = 0,51$ Resistenze $i_{\gamma} = 0,36$ Cond. Drenate Cond. non Drenate $i_c = 0,45$ R_d (kN) R_d (kN) $d_q = 1,00$ 333,6 - $d_c = 1,00$ Cond. Drenate Cond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_{\gamma} = 1,00$ 6,97 - $\xi_c = 1,00$ verifica soddisfatta -	$s_{\gamma} =$	1,00	q _{lim} (kPa)	q _{lim} (kPa)			
$i_q = 0,51$ Resistenze $i_\gamma = 0,36$ Cond. DrenateCond. non Drenate $i_c = 0,45$ R_d (kN) R_d (kN) $d_q = 1,00$ 333,6- $d_\gamma = 1,00$ Esito della verifica $d_c = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_\gamma = 1,00$ ξ_{97} - $\xi_c = 1,00$ verifica soddisfatta-	$s_{\rm c} = 1,00$		834,08	-			
$i_{\gamma} = 0,36$ Cond. DrenateCond. non Drenate $i_c = 0,45$ $R_d(kN)$ $R_d(kN)$ $d_q = 1,00$ 333,6- $d_{\gamma} = 1,00$ Esito della verifica $d_c = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d/E_d R_d/E_d $\xi_{\gamma} = 1,00$ $\xi_{\gamma} = 1,00$ - $\xi_c = 1,00$ verifica soddisfatta-	$i_{q} = 0.51$		Resistenze				
$i_c = 0.45$ R_d (kN) R_d (kN) $d_q = 1.00$ 333.6 - $d_\gamma = 1.00$ Esito della verifica $d_c = 1.00$ Cond. Drenate Cond. non Drenate $\xi_q = 1.00$ R_d / E_d R_d / E_d $\xi_\gamma = 1.00$ 6.97 - $\xi_c = 1.00$ verifica soddisfatta -	$i_{\gamma} =$	0,36	Cond. Drenate	Cond. non Drenate			
$d_q = 1,00$ 333,6 $d_\gamma = 1,00$ Esito della verifica $d_c = 1,00$ Cond. Drenate $\xi_q = 1,00$ R_d / E_d $\xi_\gamma = 1,00$ $6,97$ $\xi_c = 1,00$ verifica soddisfatta	$i_{\rm c} =$	0,45	$R_{\rm d}(\rm kN)$	$R_{\rm d}({\rm kN})$			
$d_{\gamma} = 1,00$ Esito della verifica $d_{c} = 1,00$ Cond. DrenateCond. non Drenate $\xi_{q} = 1,00$ R_{d} / E_{d} R_{d} / E_{d} $\xi_{\gamma} = 1,00$ $6,97$ - $\xi_{c} = 1,00$ verifica soddisfatta-	$d_q =$	1,00	333,6	-			
$d_c = 1,00$ Cond. DrenateCond. non Drenate $\xi_q = 1,00$ R_d / E_d R_d / E_d $\xi_{\gamma} = 1,00$ $6,97$ - $\xi_c = 1,00$ verifica soddisfatta-	$d_{\gamma} = 1,00$		Esito della verifica				
$ \begin{aligned} \xi_{q} &= 1,00 & R_{d} / E_{d} & R_{d} / E_{d} \\ \xi_{\gamma} &= 1,00 & 6,97 & - \\ \xi_{c} &= 1,00 & \text{verifica soddisfatta} & - \end{aligned} $	$d_{\rm c} =$	1,00	Cond. Drenate	Cond. non Drenate			
$\xi_{\gamma} = 1,00 \qquad \qquad 6,97 \qquad - \\ \xi_{c} = 1,00 \qquad \qquad \text{verifica soddisfatta} \qquad -$	$\xi_a =$	1,00	$R_{\rm d}$ / $E_{\rm d}$	$R_{\rm d}/E_{\rm d}$			
$\xi_c = 1,00$ verifica soddisfatta -	ξ.,=	1,00	6.97	-			
	ξ,=	1,00	verifica soddisfatta	-			

 Tabella 17 – Corpo C (trave 40x60 cm)- Verifica di capacità portante: Approccio 1 – Comb. 2

Approceio 2: A1+M1+R3						
	Арріос	favorevole 1.00				
	Carichi Permanenti	sfavorevole	1.30			
	Carichi Permanenti	favorevole	0.00			
Α	non strutturali	sfavorevole	1.50			
		favorevole	0.00			
	Carichi Variabili	sfavorevole	1.50			
		tan o'	1.00			
		C'1	1.00			
м	Parametri geoteonici	C K	1,00			
IVI	i arametri geoteemer	c _{uk}	1,00			
		γ	1,00			
D		γ _{qu}	1,60			
K	capaci	La portante 2,30				
Me Valari	eccanismo di collasso:	Kottura generale				
Valori ca	ratteristici	Valori di	progetto			
Parametri	geotecnici	Parametri	geotecnici			
$\gamma_1 (\text{KIN/m})$	19,00	$\gamma_1 (\text{KIN/m})$	19,00			
$\gamma_2 (KIN/m)$	21,00	$\gamma_2 (kIN/m)$	21,00			
$c^{+}(\text{KPa})$	200,00	$c^{+}(\text{KPa})$	200,00			
$\phi(\circ)$	30	$\phi(\circ)$	30,0			
	-		-			
Caratteristich	ne geometriche	Caratteristich	e geometriche			
B (III)	0,40	B (III)	0,40			
$\frac{L(m)}{D(m)}$	1,00	L (m) D (m)	1,00			
D (III)	0,00	D (III) B! (m)	0,00			
		D (III) $L^{+}(m)$	0,40			
		L (III) Ω (°)	1,00			
		<u> </u>	0,0			
		17	2,00			
		N. (kN)	<i>A</i> 7 8			
		$M_{\rm d}(\rm kN;m)$				
		$M_{\rm r}$ (kN·m) lato B	0,0			
		V(kN)	0,0			
		$V_{\rm r}({\rm kN})_{\rm lato B}$	0,0			
		$V_r(\mathbf{kN})$	0,0			
	Risult	ati della verifica				
N =	18 40	471	oni			
N –	22 40	$A \zeta loni$ $E_{1}(1 \times 1) = 47.94$				
$N_{\gamma} = N_{\gamma}$	22,40	$E_{\rm d}(\rm KN) = 47,84$				
$N_{\rm c} =$	30,14	Carica	o limite			
$s_q =$	1,00	Cond. Drenate	Cond. non Drenate			
$s_{\gamma} =$	1,00	q _{lim} (kPa)	q _{lim} (kPa)			
<i>s</i> _c =	1,00	1269,12	-			
$i_{q} = 0.51$		Resistenze				
$i_{\gamma} =$	0,36	Cond. Drenate	Cond. non Drenate			
$i_{\rm c} =$	0,48	$R_{\rm d}(\rm kN)$	$R_{\rm d}(\rm kN)$			
$d_q =$	1,00	507,6	-			
$d_{\gamma} =$	1,00	Esito della verifica				
$d_{\rm c} =$	1,00	Cond. Drenate	Cond. non Drenate			
$\xi_a =$	1,00	$R_{\rm d}/E_{\rm d}$	$R_{\rm d}/E_{\rm d}$			
ξ. =	1,00	10.61	-			
۶, ا	1.00	verifica soddisfatta				
oر مر	1,00	vernica souuisiana	-			

Tabella 18 – Corpo C (trave 40x60 cm) - Verifica di capacità portante: Approccio 2.

10. Riferimenti bibliografici

- Progetto dei "Lavori di costruzione della Caserma dei Vigili del Fuoco Ragusa". 1958.
- "Progetto dei Lavori di costruzione della Caserma dei Vigili del Fuoco Il Lotto" di Ragusa. 1962;
- Progetto dell' "Ampliamento della Caserma dei W.FF. di Ragusa". 1994-95.
- "Progetto di adeguamento antisismico e sopraelevazione del primo piano dell'ala Est della Caserma dei W.FF. di Ragusa". 1996.
- A.G.I. (1977). Associazione Geotecnica Italiana. "Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche".
- A.G.I. (2005). Associazione Geotecnica Italiana. "Aspetti geotecnici della progettazione geotecnica in zona sismica. Linee Guida". Edizione provvisoria Marzo 2005. Patron Bologna, Editore.
- Azizi F. (2000). "Applied analysis in geotechnics". E & FN Spon, 753 pp.
- Bieniawski, Z.T. (1973). "*Engineering classification of jointed rock masses*". Trans S. Afr. Inst. Civ. Engrs 15, 335-344.
- Crespellani T., Facciorusso J. (2010). "*Dinamica dei terreni per le applicazioni sismiche*". Flaccovio Editore, Palermo, 2010.
- D.M. 14.01.08. Norme tecniche per le costruzioni.
- DeBeer E.E. (1970). "Experimental determination of the shape factors and the bearing capacity factors of sand", Geotechnique, Vol. 20, pp. 387-411.
- Hansen J. B. (1970). "A Revised and Extended Formula for Bearing Capacity", Danish Geotechnical Institute Bulletin, No. 28, Available from The Danish Geotechnical Institute, Maglebjergvej 1, DK-2800 Lyngby, Denmark.
- Jumikis A. R. (1979). "Rock Mechanics". Trans Tech Publications, Clusthal. 356 pp.
- Meyerhof G. G. (1953). "The Bearing Capacity of Foundations Under Eccentric and Inclined Loads". Third International Conference on Soil Mechanics and Foundation Engineering, Vol 1, pp 440-445.
- Meyerhof G.G. (1951). "The ultimate bearing capacity of foundations". Géotechnique 2, No 4, 301-332.
- Meyerhof G.G. (1956). "Penetration tests and bearing capacity of cohesionless soils", Proceedings ASCE, Vol. 82, No. SM1, Paper 866, pp. 1-19

- Miller R.D., Xia J., Park C.B. (1999). "Multichannel analysis of surface waves to map bedrock". Leading Edge, 8, pp. 1392-1396.
- Park C.B., Miller R.D., Xia J. (1999). "Multichannel analysis of surface waves (MASW)". Geophysics, vol. 64, pp.800-808.
- Reissner H. (1924). "*Zum Erddruckproblem*" (Concerning the earth-pressure problem), Proc. 1st Int. Congress of Applied Mechanics, Delft, pp. 295-311.
- Serafim J.L., Pereira J.P. (1983). "Consideration of the geomechanics classification of Bieniawski". Proc. Int. Symp. on Engineering Geology and Underground Constructions, pp. 1133 - 1144.
- Terzaghi, K. 1943. "Evaluation of Coefficient of Subgrade Reaction", Geotecnique, Vol 5, No. 4, pp 118-143.
- Terzaghi, K., Peck R.B. (1948). "Soil Mechanics in Engineering Practice". John Wiley and Sons, New York.
- Vesic A. S. (1973). "Analysis of Ultimate Loads of Shallow Foundations". Journal of Soil Mechanics and Foundations Division, Vol 99, No. SM1, pp 45-73.
- Vesic A. S. (1975). "Bearing Capacity of Shallow Foundations". Foundation Engineering Handbook, pp 121-147, editors H. F. Winterkorn and H. Y. Fang.

11. Allegati

Alla presente relazione sono allegati i seguenti documenti:

Allegato A: Estratto dal Certificato di prova emesso dal Laboratorio autorizzato Betontest s.r.l. di Ispica (Ragusa) relativo alle prove di compressione effettuate su 8 campioni cubici di roccia prelevati durante i lavori relativi al progetto dell' *"Ampliamento della Caserma dei VV.FF. di Ragusa"* del 1994-95. BETONTEST s.r.l. Sede e Laboratorio: Via B. Spadaro, 45 - 97014 ISPICA (RG) 2 0932/950000 - Fax 0932/793584 SEZ. TERRE - ROCCE - BITUMI Via Mons. lacono, 12 - 971CO RAGUSA 3 0932/643080 Part. IVA 00588590885

degil	
degi	
Co. Contractor	
10/ 1/201	
IN Ind Val	k
	2
I Vincilia 109	3
S 140 M	
ION VERDINA 12	į
	200
N . N	7
N#N 1/1/~·/	

LABORATORIO UFFICIALE DI PROVE SUI MAT AUTORIZZATO CON D. M. n. 24558 del 22 - 02 - 1984

PROVINI IN ROCCIA Materiale esperimentato: _

Ditta richiedente: ___

C. SO VITTORIO EMANJELE, 161 - GELA

ELRO EDIL COSTRUZIONI S.R.L.

RISULTATO DELLE PROVE

N. d'ord.	Data preparazione dichiarata dal richiedente	Data della prova	Dimensioni del provino (cm.)	Sezione compressa (cmq.)	Carico unitario di rottura (N/mmq)	Contrassegno
1	at at	21/11/1995	10x10x10	100	11.5	PROVINO Nº1
2	1 1	21/11/1995	10x10x10	100	21.5	PROVINO Nº2
3	1 1	21/11/1995	10x10x10	1.00	14.5	PROVINO Nº3
4	1 1	21/11/1995	10x10x10	100	74.5	PROVINO N°4
5	******	******	****	****	*****	*****
						ė
6						

ANNOTAZIONI: I suddetti provini sono stati dichiarati provenienti dai lavori di costruzione di progetto di ampliamento della caserma dei Vigili del Fuoco nel comune di Ragusa dalla ditta Euro Edil Costruzioni S.r.l. Prove richieste dal Direttore Dei eseguiti Lavori Arch. Giuseppe Giampiccolo.

22/11/1995 Ispica,

IL DIRETTORE DEL LABORATORIO (dr. ing. Gaetano Fidelio) and the

ERIMENTATORE LO Corrado Monaca)

IL DIRETTORE TECNICO (dr. ing Gioyanni Solarino) BETONTEST s.r.l. Sede e Laboratorio: Via B. Spadaro, 45 - 97014 ISPICA (RG) ☎ 0932/950000 - Fax 0932/793584 SEZ. TERRE - ROCCE - BITUMI Via Mons. Iacono, 12 - 97160 RAGUSA ☎ 0932/643080 Part. IVA 00588590885

LABORATORIO UFFICIALE DI PROVE SUI MATERIALI AUTORIZZATO CON D. M. n. 24558 del 22 - 02 - 1984

Materiale esperimentato: ____PROVINI_IN_ROCCIA

Ditta richiedente: ____

EURO EDIL COSTRUZIONI S.R.L.

<u>C. SO VITTORIO EMANLELE, 161 - GELA</u>

RISULTATO DELLE PROVE

N. d'ord.	Data preparazione dichiarata dal richiedente	Data della prova	Dimensioni del provino (cm.)	Sezione compressa (cmq.)	Carico unitario di rottura (N/mmq)	Contrassegno
	-					
1	d'all	06/12/1995	10x10x10	100	21.5	PROVINO N° 1
2	<i>.</i> .					
4	{	06/12/1995	<u> 10x10x10</u>	100	21.0	PROVINO N° 2
3		06/12/1995	10x10x10	100	21.0	PROVINO Nº 3
4		06/12/1995	10×10×10	100	74.0	PROVINO N° 4
5	****	****	***	***	***	*****
6						d

ANNOTAZIONI: I suddetti provini sono stati dichiarati provenienti dai lavori di costruzione di

Progetto di ampliamento della Caserma dei Vigili del Fuoco nel comune di Ragusa eseguiti dalla ditta Euro Edil Costruzioni S.r.l.. Prove richieste dal Direttore Dei Lavori Arch. Giuseppe Giampiccolo

Ispica, _____07/12/1995

LO SPERIMENTATORE Corrado Monaca) (per.

Stampa: LA GRAFICA 2 906552 - MODICA

IL DIRETTORE TECNICO ing. Giovanni Solarino) (dr λV 4

LABORATORI

 $\bigcup_{n \in \mathbb{N}}$

<u> W</u>NC