VALUTAZIONE DELLA VULNERABILITA' SISMICA DEL CORPO A1 DEL COMANDO PROVINCIALE VVF DI RAGUSA

Viale dei Platani, 2 Ragusa

RELAZIONE DI CALCOLO

Il tecnico : Ing. Bartolomeo Pantò

Sommario

VAI VVI	LUTAZIONE DELLA VULNERABILITA' SISMICA DEL CORPO A1 DEL COMANDO 7 DI RAGUSA	PROV	VINCIALE
VIA	LE DEI PLATANI, 2 RAGUSA	•••••	1
1	NORMATIVA DI RIFERIMENTO	•••••	5 6
3	DESCRIZIONE GENERALE DELL'EDIFICIO		6
3.1	INQUADRAMENTO TERRITORIALE	6	
3.2	INQUADRAMENTO PLANIMETRICO DEL COMPLESSO EDILIZIO	7	
3.3	DESCRIZIONE DELLA GEOMETRIA	8	
4	TIPOLOGIA STRUTTURALE	•••••	11
4.1	L'INTELAIATURA SPAZIALE IN CALCESTRUZZO ARMATO	11	
4.2	ORIZZONTAMENTI	12	
4.3	SCALA	13	
4.4	FONDAZIONI	13	
5	AZIONE SISMICA	•••••	14
5.1	COMBINAZIONI DI CARICO	18	
6	MATERIALI	•••••	20
6.1	PROPRIETA' MECCANICHE DEI CALCESTRUZZI	20	
6.2	BARRE D'ARMATURA	23	
6.3	TIPOLOGIA DELLA MURATURA E STIMA DELLE CARATTERISTICHE MECCANICHI	E.24	
7 8 9 10 11	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE		26 28 28 29 32
7 8 9 10 11 11.1	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI.	35	26 28 28 29 32
7 8 9 10 11 11.1 11.2	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI	35 43	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI	35 43 46	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI	35 43 46 53	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI	35 43 46 53 54	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE	35 43 46 53 54	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE CARATTERISTICHE DINAMICHE DEL MODELLO IN STRUTTURA MISTA	35 43 53 54	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE CARATTERISTICHE DINAMICHE DEL MODELLO IN STRUTTURA MISTA CARATTERISTICHE DINAMICHE DEL MODELLO CON SOLO TELAIO	35 43 46 53 54 54 57	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2 13	ANALISI DEI CARICHI	35 43 53 54 54 57	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2 13 13.1	ANALISI DEI CARICHI	35 43 53 54 54 57	26 28 28 32 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2 13 13.1 13.2	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE CARATTERISTICHE DINAMICHE DEL MODELLO IN STRUTTURA MISTA CARATTERISTICHE DINAMICHE DEL MODELLO CON SOLO TELAIO STIMA DELLA CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE CURVE DI CAPACITA'	35 43 46 53 54 54 57 61 70	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2 13 13.1 13.2 14	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE CARATTERISTICHE DINAMICHE DEL MODELLO IN STRUTTURA MISTA CARATTERISTICHE DINAMICHE DEL MODELLO CON SOLO TELAIO STIMA DELLA CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE CURVE DI CAPACITA' DEFORMATE A COLLASSO VERIFICHE SISMICHE GLOBALI	35 43 53 54 54 57 61 70	26 28 28 29 32
7 8 9 10 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2 13 13.1 13.2 14 14.1	ANALISI DEI CARICHI METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE CRITERI DI VERIFICA PROCEDURA DI STIMA DI VULNERABILITÀ IN TERMINI DI SPOSTAMENTO DETTAGLI DI MODELLAZIONE SCHEMI RESISTENTI CARICHI FORMATI ANALISI SISMICHE (PUSH-OVER) ANALISI SISMICHE (PUSH-OVER) ANALISI PER CARICHI VERTICALI LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE CARATTERISTICHE DINAMICHE DEL MODELLO IN STRUTTURA MISTA CARATTERISTICHE DINAMICHE DEL MODELLO CON SOLO TELAIO STIMA DELLA CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE CURVE DI CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE CURVE DI CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE CURVE DI CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE	35 43 46 53 54 54 57 61 70	26 28 28 29 32

3

16	CONCLUSIONI	••••••	105
15.2	CONSIDERAZIONI SULLA SICUREZZA STATICA DELL'EDIFICIO	103	
15.1	LA SIMULAZIONE DELLA RISPOSTA PER CARICHI VERTICALI ALLO SLU	102	
15	VERIFICHE STATICHE SLU	••••••	100
14.5	CONSIDERAZIONI SULLA SICUREZZA SISMICA	99	
14.4	INDICATORI DI RISCHIO	97	
14.3	VERIFICHE A TAGLIO DELLE SEZIONI	91	

1 PREMESSA

La presente relazione è relativa alla verifica di vulnerabilità sismica, effettuata ai sensi del Nuovo Testo unico 2008 sulle Costruzioni (NTC2008), del corpo A1 del comando provinciale dei Vigili del Fuoco di Ragusa, sito in via dei Platani, 2 nel comune di Ragusa.

L'immobile in oggetto, che riveste funzione strategica ai fini di Protezione Civile, possiede una tipologia strutturale assimilabile ad una intelaiatura spaziale in calcestruzzo armato interagente in parte con murature di tamponamento e/o contenimento dei terrapieni le cui caratteristiche meccaniche sono tali da non poter essere ignorate in fase di modellazione.

Il corpo è costituito da tre elevazioni di cui le ultime due fuori terra e la prima parzialmente interrata. In particolare il piano semi-interrato e la prima elevazione fuori terra hanno destinazioni d'uso coerenti magazzini officine e depositi (come meglio specificato negli elaborati di calcolo). La seconda elevazione fuori terra ha destinazione d'uso 'uffici aperti al pubblico. Una parte del fabbricato, a doppia altezza, riveste la funzione di locale palestra.

In accordo a quanto previsto dalla normativa vigente, al punto C8.7.1.4, le verifiche di vulnerabilità sismica sono state eseguite, in accordo a quanto previsto nel NTC 2008, mediante l'utilizzo di analisi statiche nonlineari tipo push-over potendo inquadrare la conoscenza dell'edificio nell'ambito di un livello LC2, ai sensi del punto C8.A.1.

Poiché si è voluto tener conto dell'influenza delle tamponature, in quanto non trascurabile, di è scelto di procedere alla modellazione dell'edificio mediante il software "3DMacro" che ha ricevuto diverse validazioni sia in ambito professionale che scientifico [1,2,3,4,5] sia per gli edifici in muratura che per le strutture miste muratura calcestruzzo armato. Nel modello sono stati utilizzati elementi monodimensionali non lineari (travi e pilastri), interagenti con la muratura di tamponamento.

Tutte le verifiche sono state eseguite con il metodo degli Stati Limite, quindi applicando un approccio di tipo prestazionale, coerentemente alle procedure riportate nel NTC 08, che consentono di determinare un parametro globale di sicurezza della struttura nei confronti dell'azione sismica per ciascuno stato limite considerato. L'edificio è stato verificato sia nei confronti dei meccanismi duttili (verifiche globali), sia nei confronti delle rotture fragili a taglio degli elementi in c.a.

Bibliografia:

[1] I. Caliò, M. Marletta, B. Pantò (2004). "Un semplice macro-elemento per la valutazione della vulnerabilità sismica di edifici in muratura". XI Convegno ANIDIS L'Ingegneria Sismica in Italia. Genoa, 25-29 Gennaio.

[2] I.Caliò, F. Cannizzaro, E. D'Amore, M. Marletta & B. Pantò (2008). "Un nuovo approccio ai macro-elementi per la stima della resistenza sismica di edifici in struttura mista muratura – calcestruzzo armato: applicazioni ad un caso di studio". Convegno RELUIS - Valutazione e Riduzione della Vulnerabilità Sismica di Edifici Esistenti in C.A. *Roma, 29-30 Maggio.*

[3] **R. Marques, P.B. Lourenco (2011).** "Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings".*Computers and Structures, Vol 89 (21-22) 2079-2091.*

[4] I. Caliò, M. Marletta, B. Pantò (2012). "A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings". Engineering Structures, Vol 40 (2012) 327-338

[5] **R. Marques, P.B. Lourenco (2014).** "Unreinforced and confined masonry buildings in seismic regions: validation of macroelement models and cost analysis". Engineering Structures, Vol 64 (2014) 52-67

2 NORMATIVA DI RIFERIMENTO

- Decreto del Ministero delle Infrastrutture e dei Trasporti del 14 Gennaio 2008 : Approvazione delle nuove norme tecniche per le costruzioni.

- **Circolare 5 agosto 2009** : Nuove norme tecniche per le costruzioni approvate con decreto del Ministro delle infrastrutture 14 gennaio 2008 – "Cessazione del regime transitorio di cui all'articolo 20, comma 1, del decreto-legge 31 dicembre 2007, n. 248." - Gazzetta Ufficiale n.187 del 13 agosto 2009.

3 DESCRIZIONE GENERALE DELL'EDIFICIO

Nei successivi sottoparagrafi si riporta una descrizione generale dell'edificio e del suo inquadramento territoriale.

3.1 INQUADRAMENTO TERRITORIALE

L'edificio è situato all'interno del tessuto urbano della città di Ragusa, in una zona densamente antropizzata. La conformazione del terreno su cui sorge la struttura presenta una naturale pendenza che ha richiesto dei lavori di sbancamento e costituzione di rilevati durante la fase di costruzione (ancora visibili nella zona di territorio contigua alla caserma e posta a ovest rispetto a quest'ultima).

Figura 1: Inquadramento della caserma all'interno del tessuto urbano: (a) immagine aerea; (b) aerofotogrammetria;

Da un punto di vista sismico, vista la conformazione dei luoghi e la posizione dell'edificio rispetto al versante in cui è collocato, verrà considerata una categoria topografica T1.

3.2 INQUADRAMENTO PLANIMETRICO DEL COMPLESSO EDILIZIO

L'edificio oggetto di studio è inserito in un complesso edilizio più ampio che ospita il comando provinciale dei Vigili del Fuoco della provincia di Ragusa. Sulla scorta della documentazione tecnica, resa disponibile dalla Provincia Regionale di Ragusa, l'edificio è stato classificato come corpo A1 e facente parte di un gruppo separati da giunti tecnici in accordo al quadro d'insieme riportato in figura 1.

Figura 2: Planimetria generale con l'indicazione dei corpi di fabbrica utilizzata nel precedente studio di vulnerabilità.

L'edificio progettato nel 1958 è stato completato nel 1962 e nel suo assetto originario era parte di un corpo di fabbrica più esteso; successivamente, nel 1998, è stato suddiviso in due parti (corpo A1 e corpo C in del quadro d'insieme) resi staticamente e simicamente indipendenti mediante la formazione di un giunto tecnico e il raddoppio dei pilastri di estremità realizzato tramite l'inserimento di colonne in acciaio afferenti al solo corpo C.

3.3 DESCRIZIONE DELLA GEOMETRIA

La struttura è di forma pressoché rettangolare con dimensioni massime in pianta di circa 15m x 50m. Da un punto di vista geometrico l'edificio può pensarsi composto da tre sottovolumi, interagenti tra loro sia da un punto di vista statico che sismico, differenti tra loro per la disposizione degli elementi resistenti e, soprattutto, per quote differenti del solaio di copertura (figura 3). In particolare si distingue il volume ovest, a due elevazioni, che ospita al piano terra i locali officina e meccanica, il volume centrale caratterizzato dalla presenza del vano scala (figura 4) e il volume nord che ospita un unico ambiente a tutta altezza adibito a palestra. Il piano semi-interrato interessa soltanto i volumi est e centrale. Infatti, come si evince dal prospetto sud, figura 5, l'edificio segue l'andamento scosceso del terreno circostante con due quote di fondazione sfalsate.

Figura 3: Vista dell'edificio dal cortile interno.

Figura 4: Vista della copertura della porzione centrale in corrispondenza del vano scala.

Il piano di quota più elevato è in corrispondenza della porzione interna mentre il piano di posa inferiore è relativo ai corpi che ospitano il vano scala e la palestra (vedi figura 5) con la formazione di una ulteriore elevazione, totalmente interrata dalla parte del cortile interno e fuori terra nel prospetto est e sud.

Figura 5: Vista del prospetto sud sulla via pubblica.

Un aspetto importante ai fini della valutazione della sicurezza sismica dell'edificio è rappresentato dalla presenza di ampie zone a doppia altezza, presenti in corrispondenza del vano scala e nella porzione di est (palestra). Di seguito si riporta una planimetria (figura 6) e una sezione schematica dell'edificio (figura 7) al fine di chiarirne l'andamento plano-altimetrico dell'edificio.

Figura 6: Schema architettonico del piano terra

Figura 7: Sezione longitudinale.

Figura 8: Vista interna del vano scala.

Figura 9: Vista interna del locale palestra.

4 TIPOLOGIA STRUTTURALE

L'edificio possiede un tipologia strutturale ascrivibile a una struttura intelaiata in calcestruzzo armato parzialmente interagente con le murature di chiusura di alcuni campi dei telai. Tali murature, sebbene si presume che in fase di progettazione non siano state considerate in termini di elementi resistenti, ne condizionano la risposta sismica a collasso e pertanto occorre considerarne l'influenza.

4.1 L'INTELAIATURA SPAZIALE IN CALCESTRUZZO ARMATO

Il telaio in calcestruzzo armato possiede le peculiarità tipiche degli edifici progettati per soli carichi verticali con parti in cui i telai risultano disposti prevalentemente lungo una direzione. In particolare nella zona centrale e nella palestra i telai portanti sono disposti lungo la direzione longitudinale dell'edificio, mentre nella zona interna dell'autorimessa i telai sono disposti lungo la direzione trasversale.

Le sezioni degli elementi strutturali (travi e pilastri) sono varie e distribuite in modo disomogeneo lungo l'altezza dell'edificio e all'interno dello stesso piano.

I pilastri presentano per lo più sezioni quadrate con lato di 45-50 cm alla quota dello scantinato e 30 cm al secondo ed ultimo livello. Le travi sono di tipo emergente con base 30cm e altezza variabile, a seconda della luce libera di calcolo, da 80cm a 50cm.

Figura 10: saggi su travi e pilastri della zona prossima al vano scala (piano terra).

4.2 ORIZZONTAMENTI

I solai, orditi ortogonalmente ai telai principali, sono realizzati in latero-cemento e gettati in opera con altezza dei travetti e spessore della caldana variabili. Di seguito si riporta un prospetto con la sintesi delle tipologie di solaio presenti (tabella 1) e la relativa collocazione all'interno della costruzione e la stima del peso (tabella 2).

Tabella 1:tipologie solai

livelle	Ambianta	tipologia	Luce libera	As=As'
liveno	Ambiente		[m]	[cmq]
calpestio piano terra	nalostra	35+5	8,6	2622
copertura	palestra	25+4	8,6	2 \$16
calpestio piano terra		21+3	6,3	1¢20+1f18
calpestio paino primo e copertura	corpo controlo	18+4	6,3	1¢14+1f12
calpestio piano terra	corpo centrale	21+3	4,8	1¢16+1f12
calpestio paino primo e copertura		18+4	4,8	2φ12
calpestio piano terra	vano scala	21+3	5,8	1¢18+1f16
calpestio paino primo e copertura	Vallo Scala	18+4	5,8	2 \012
calpestio paino primo e copertura	Autorimessa	25+4	8	1ø16+1f14

Tabella 2:peso strutturale associato ai solai

TIPOLOGIA	H travetti	H caldana	peso travetti	peso caldana	incidenza laterizi	Gk1
	[cm]	[cm]	KN/mq	KN/mq	KN/mq	KN/mq
35+5	35	5	2,12	1,25	1,5	4,87
25+4	25	4	1,52	1,00	1,2	3,72
21+3	21	3	1,27	0,75	0,8	2,82
18+4	18	4	1,09	1,00	0,8	2,89

4.3 SCALA

La struttura della scala è costituita da tre rampe con larghezza costante pari a 1.5m con gradini a sbalzo orditi su una trave a ginocchio con sezione 30cmx80cm. Fa eccezione la rampa di sbarco al piano terra che è sostenuta da una soletta rampante e gradini riportati. Di seguito si riporta l'analisi dei pesi strutturali di entrambe le tipologie:

TIPOLOGIA	TIPOLOGIA CON SOLETTA RAMPANTE E GRADINI RIPORTATI					
rampa	sp=15cm	3,75 KN/mq				
gradini		1,80 KN/mq				
	TOT	5,55 KN/mq				
TIPOLOGIA	CON GRADINI A SBALZO					

4,16 KN/mq

3,75 KN/mq

sp_eq=0,185cm

sp=15cm

Tabella 3:peso strutturale associato ai solai

4.4 FONDAZIONI

gradini

pianerottoli

Le fondazioni sono realizzate mediante plinti parzialmente collegati, di forma tronco-conica, collocati su due piani di posa orizzontali posti a quote sfalsate di circa 4m. Le tipologie e le dimensioni dei plinti sono

stati desunti sulla scorta degli elaborati del progetto originario, di cui se ne riporta uno stralcio nella figura che segue:

Figura 11 : Pianta dei plinti di fondazione (progetto originale).

5 AZIONE SISMICA

Di seguito si riportano i parametri relativi alla caratterizzazione dell'azione sismica per l'edificio in esame. In particolare verrà fornita una caratterizzazione del sito di costruzione, dell'opera in relazione alla destinazione d'uso e una caratterizzazione del suolo da un punto di vista geologico e morfologico.

Caratterizzazione del sito di costruzione

L'accelerazione al suolo di riferimento viene determinata a partire dalle coordinate (latitudine e longitudine) mediante le tabelle di pericolosità sismica allegate al NTC 08 ed effettuando le opportune operazioni di interpolazione dei dati.

Coordinate geografic	a _g (g)	
Latitudine Longitudine		(10% in 50 anni)
36,9249	14,7201	0.2038

Tabella 4:parametri sismici sito di costruzione

In cui a_g rappresenta l'accelerazione massima al suolo caratterizzata dalla probabilità di superamento del 10 % nel periodo di 50 anni.

Caratterizzazione dell'opera

L'opera in esame rientra nella tipologia di opere ordinarie e classe d'uso IV (costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità), secondo quanto previsto nelle NTC '08. La tabella sottostante riassume i dati relativi alla determinazione del periodo di riferimento per il calcolo dell'azione sismica.

Tabella 5:caratterizzazione dell'opera

Tipo di costruzione	Classe d'uso	Vita Nominale (anni)	Cu	Periodo di Riferimento (anni)
Opera Ordinaria	IV	50	2	100

Caratterizzazione del suolo

Il sito in questione è stato oggetto di indagini mediante sondaggi diretti fino alla profondità di 30m e relative prove di tipo "Down Hole". Dallo studio è emersa la presenza di una copertura data da materiale di riporto per uno spessore variabile da un metro a due metri e un sottostante strato costituito da Calcareniti siltore alternate a Calcisiltiti. Le misure sismiche in foro (*down hole*) hanno evidenziato una velocità di propagazione delle onde di taglio (Vsh) superiore a 580m/sec. Per maggiori dettagli si rimanda alla relazione geologica redatta dal Dott. Geologo Ercole Pietro Quaranta, allegata alla presente relazione.

Figura 12: Collocazione in pianta dei sondaggi (estratto relazione geologica).

Figura 13: Andamento delle velocità di propagazione delle onde "P" e "S"(estratti dalla relazione geologica).

Un ulteriore studio geologico, eseguito a supporto della precedente stima di vulnerabilità, ha evidenziato velocità di propagazione delle onde di taglio pari a 932 m/s (vedi elaborato <u>ORGRG02030</u> allegato al precedente studio).

Figura 14: Andamento delle velocità di propagazione delle onde "S"(campagna di indagini 2012).

Dal punto di vista dell'azione sismica il terreno di fondazione verrà considerato come suolo di tipo A: "ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800m/s, eventualmente comprendenti in superficie uno strato di alterazione, non superiore a 3m."

Occorre rilevare che dai sopralluoghi effettuati non sono stati riscontrati quadri fessurativi imputabili a eventuali cedimenti fondali.

Categoria Suolo	Condizione topografica	St
A	T1	1.00

Tabella 6:caratterizzazione sismica del suolo

L'azione sismica viene valutata mediante gli spettri di normativa caratterizzati per ciascuno degli stati limite considerati. Nell'ambito della metodologia di analisi non-lineare tali spettri consentono di determinare la domanda di spostamento. La tabella seguente riporta, per ciascun stato limite, i parametri degli spettri di progetto elastici in termini di accelerazione.

Stato limite	P[2].	Τ,	PGA	F	T	η	s	TB	Tc	T
ps sto	81	60	0.0548	2.51	0.269	1	1	0.0898	0.269	1.82
P= SLD	63	100	0.0766	2.47	0.29	1	1	0.0966	0.29	1.91
Po SLV	10	949	0.287	2.37	0.455	1	1	0.152	0.455	2.75
P= sic	5	1949	0.404	2.36	0.508	1	- 1	0.169	0.508	3.22

dove:

T_r : tempo di ritorno dell'evento sismico di progetto;

a_g : accelerazione massima al suolo con probabilità di superamento del 5% nel periodo di riferimento ai fini della verifica della struttura;

 η : coefficiente legato allo smorzamento;

S : coefficiente di suolo

 $S = S_S \cdot S_T$

T_B,T_C,T_D : periodi limite dei campi significativi dello spettro;

La tabella seguente riporta invece, per ciascun stato limite, le espressioni della componente orizzontale dello spettro di progetto elastico in termini di accelerazioni Sd(T), dove T rappresenta il periodo fondamentale di vibrazione del sistema.

T< T _B	$T_{B} < T < T_{C}$	$T_{C} < T < T_{D}$	$T > T_D$
$S_d(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_g} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_g}\right)\right]$	$S_d(T) = a_g \cdot S \cdot \eta \cdot F_0$	$S_d(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_c}{T}$	$S_d(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C T_D}{T^2}$

Di seguito si riportano gli spettri di progetto che scaturiscono dalle caratterizzazioni sopra riportate.

Figura 15: Spettri di risposta per il sito di costruzione.

5.1 Combinazioni di carico

Combinazioni di carico sismiche

L'azione sismica (E_d), relativa allo stato limite considerato, deve essere combinata con i valori caratteristici dei carichi permanenti e con i valori "quasi permanenti" dei carichi variabili.

I medesimi carichi gravitazionali devono essere considerati sia per la sovrapposizione degli effetti (sollecitazioni, spostamenti, ecc) sia per il calcolo delle masse sismiche.

$$Cu = E_{d} + \sum_{i=1}^{NG} G_{k}^{(i)} + \sum_{i=1}^{NQ} Q_{k}^{(i)} \cdot \psi_{2}^{(i)}$$

Combinazioni di carico non sismiche

Nell'ambito delle verifiche non sismiche si distingue tra verifiche di esercizio (SLE) e verifiche di sicurezza allo stato limite ultimo (SLU). Per ciascuna verifica i carichi vengono combinati secondo le prescrizioni di normativa:

- Combinazione Stati Limite Ultimi

$$Cu = \sum_{i=1}^{NG} G_k^{(i)} \cdot \gamma_G^{(i)} + Q_k^{(1)} \cdot \gamma_Q^{(1)} + \sum_{i=2}^{NQ} Q_k^{(i)} \cdot \gamma_Q^{(i)} \cdot \psi_0^{(i)}$$

- Combinazioni Stati Limite di Esercizio

Combinazione rara

$$Cr = \sum_{i=1}^{NG} G_k^{(i)} + Q_k^{(1)} + \sum_{i=2}^{NQ} Q_k^{(i)} \cdot \psi_0^{(i)}$$

Combinazione frequente

$$Cf = \sum_{i=1}^{NG} G_k^{(i)} + Q_k^{(1)} \cdot \psi_1^{(1)} + \sum_{i=2}^{NQ} Q_k^{(i)} \cdot \psi_2^{(i)}$$

Combinazione quasi permanente

$$Cp = \sum_{i=1}^{NG} G_k^{(i)} + \sum_{i=1}^{NQ} Q_k^{(i)} \cdot \psi_2^{(i)}$$

Dove :

G_k : valore caratteristico dei carichi permanenti

Q_k : valore caratteristico dei carichi variabili

 $\mathbf{Q}_{k}^{(1)}$: carico variabile principale

I coefficienti ψ consentono di calcolare la quota del carico variabile in relazione alla probabilità di superamento nel periodo di riferimento :

- Ψ_0 : *valore raro* P. superamento < 10%
- ψ_1 : valore frequente P. superamento > 10%

 ψ_2 : quasi permanente - P. superamento > 50%

La norma riporta tali coefficienti in relazione alla destinazione d'uso degli ambienti:

Categoria - Azione variabile	Ψ.	Ψ1	Ψ₂
Categoria A Ambienti ad uso residenziale	0.7	0.5	0.3
Categoria B Uffici	0.7	0.5	0.3
Categoria C Ambienti suscettibili di affollamento	0.7	0.7	0.6
Categoria D Ambienti ad uso commerciale	0.7	0.7	0.6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso	1.0	0.9	0.8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0.7	0.7	0.6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0.7	0.5	0.3
Categoria H Coperture	0.0	0.0	0.0
Vento	0.6	0.2	0.0
Neve (a quota ≤ 1000 m s.l.m.)	0.5	0.2	0.0
Neve (a quota > 1000 m s.l.m.)	0.7	0.5	0.2
Variazioni termiche	0.6	0.5	0.0

6 MATERIALI

L'edificio in esame è stato oggetto di un dettagliato rilievo strutturale e due successive campagne di indagini strutturali che hanno permesso di verificare e integrare le informazioni provenienti dal progetto originale, risalente al 1958. La prima campagna di indagini è stata costituita da saggi diretti, pacometrie e prove dirette per la determinazione dei parametri meccanici del calcestruzzo e dell'acciaio; in particolare sono stati estratti provini cilindrici di calcestruzzo, sottoposti a schiacciamento, e barre di armatura sottoposte a prove di trazione. I risultati della prima campagna d'indagine, condotta dalla SIDERCEM, sono riportati nel report delle indagini, redatto dall'ing. Vincenzo Venturi, che si ritiene parte integrante alla presente relazione.

Nell'ambito del presente studio si è ritenuto di ampliare le indagini strutturali già eseguite per migliorare la conoscenza dell'edificio integrando il rilievo strutturale, effettuando indagini sulle murature alla scopo di individuare le principali caratteristiche meccaniche in modo da consentirne la valutazione dell'influenza nella modellazione e nelle verifiche sismiche. Durante la seconda campagna d'indagini, coordinata dall'ing. Marco Intelisano (per conto della OmniaTest s.r.l.), sono stati eseguiti:

- 6 saggi diretti sulle murature;
- 6 endoscopie in foro;
- 1 prova di compressione mediante doppi martinetti piatti allo scopo di valutare il modulo elastico e stimare la resistenza a compressione della muratura.

Inoltre sono stati estratti e sottoposti a schiacciamento due ulteriori provini cilindrici di calcestruzzo su due pilastri, uno del piano interrato e uno del piano terra. I risultati della seconda campagna d'indagine sono riportati nell'elaborato prodotto dalla OmniaTest s.r.l. che si ritiene parte integrante della presente relazione.

I risultati di tali indagine hanno permesso di raggiungere un livello di conoscenza LC2 (FC=1.2) in accordo a quanto previsto al punto C8A.2.3 della circolare esplicativa delle NTC '08.

Entrambi gli elaborati delle indagini sono depositati presso gli uffici della provincia regionale di Ragusa.

6.1 PROPRIETA' MECCANICHE DEI CALCESTRUZZI

La tabelle riportate nel seguito riportano i valori di resistenza media ottenuta dai provini estratti e testati nelle due campagne di indagini effettuate.

LIVELLO	PROVINO	ELEMENTO	Rm [Mpa]
	C1	PILASTRO	2,0
1	C2	TRAVE	9,6
±	C3	PILASTRO	8,1
	C4	TRAVE	12,9
	C5	PILASTRO	8,3
2	C6	TRAVE	34,4
2	C7	TRAVE	26,6
	C8	PILASTRO	8,2
	C9	TRAVE	28,7
2	C10	PILASTRO	21,6
5	C11	PILASTRO	13,9
	C12	TRAVE	28,6

Tabella 7: Resistenze a rottura dei provini testati nella prima campagna di indagini

Tabella 8: Resistenze a rottura dei provini testati nella seconda campagna di indagini

LIVELLO	PROVINO	ELEMENTO	R_opera [Mpa]	f_corr	Rm [Mpa]
1	C1*	PILASTRO	6,1	1,2	7,32
2	C2*	PILASTRO	9,34	1,2	11,208

Coerentemente con quanto adottato nel rapporto di prova associato alla prima campagna di indagini nella valutazione delle resistenze dei calcestruzzi si è assunto un fattore amplificativo della resistenza rispetto alla resistenza a compressione misurata sulla carota. In particolare in accordo a quanto riportato nella letteratura [Luigi Coppola - Concrete Tender par. 4.4.1.4] ci si è riferiti a un fattore di "tormento" f_{Tor} che risulta variabile in funzione della resistenza a compressione misurata sulla carota sulla carota R_{c,car}, come riportato in Tabella.

Tabella 9: Coefficiente correttivo della resistenza conseguente al disturbo indotto dal carotaggio

f _{Tor}	1,20	1,15	1,10	1,05
R _{c,car} [N/mm ²]	10 -20	21 - 30	31 - 40	> 40

Occorre rilevare che i risultati sui provini dei pilastri hanno evidenziato una differente resistenza tra gli elementi dei livelli inferiori (terra e interrato) e gli elementi del primo piano. Pertanto si è ritenuto di calcolare i valori medi distinti , come riportato nelle tabelle che seguono:

LIVELLO	PROVINO	Rm [Mpa]
interato e terra	C1	2,0
	C3	8,1
	C5	8,3
	C8	8,2
	C1*	7,32
valore medio		6,78

LIVELLO	PROVINO	Rm [Mpa]
	C10	21,6
primo	C11	13,9
	C2*	11,21
valore medio		15,57

Come si evince dalla tabella i valori medi delle resistenze dei pilastri delle prime due elevazioni sono estremamente bassi e non idonei ad assumere funzione strutturale avendo resistenza inferiore ai 15 Mpa. Occorre tuttavia considerare che la presenza di murature al piano semi-interrato, ad eccezione di una zona centrale, consente di assimilare l'organismo resistente ad una struttura mista muratura-calcestruzzo armato in considerazione del fatto che anche le murature contribuiscono ad equilibrare sia i carichi verticali che sismici, come peraltro rilevabile dai risultati della prova con martinetto singolo ubicata in corrispondenza della parete nord della palestra su cui scaricano anche i carichi derivanti dal solaio, infatti la tensione rilevata nella muratura, pari a circa 2.5 daN/cm² visto lo spessore murario è compatibile con un carico sul muro di 2.5x50x100=12.500 daN/ml certamente non associabile al solo peso del muro sovrastante pari a circa 1x3x0.5x1600=2.400 daN/ml.

Le prove sulle travi hanno evidenziato valori di resistenza ultima molto bassi al livello del semi-interrato e più elevati ai livelli superiori. In coerenza con i risultati delle indagini, per le travi si è assunto un valore medio delle resistenze di 11,25 Mpa alla prima elevazione e 29,50 Mpa alle ultime due elevazioni.

Il valore di calcolo della resistenza cilindrica a compressione (fc) viene determinato a partire dal valore caratteristico della resistenza cubica (R_{ck}), ottenuta a partire dal valor medio dei provini, ridotti per il fattore di confidenza corrispondente al livello di conoscenza raggiunto (LC2). In particolare si ha:

$$f_c = Rck * 0.85 * 0.83 = (R_{cm} / FC) * 0.85 * 0.83 = (R_{cm} / 1.2) * 0.85 * 0.83$$

Il valore del modulo di elasticità (E_c) e della resistenza a trazione vengono quindi determinati a partire dalla resistenza cubica caratteristica a compressione (R_{ck}) seguendo le prescrizioni delle NTC'08 al punto 11.2.10. Infine per il calcestruzzo si assume un legame parabola-rettangolo per il calcestruzzo con limite nelle deformazioni. Limitatamente alle verifiche delle rotture fragili a taglio, la resistenza del calcestruzzo viene ridotta del coefficiente di sicurezza parziale del materiale calcestruzzo (γ_c).

Figura 16: Legame costitutivo utilizzato per il calcestruzzo

6.2 Barre d'armatura

Tali valori sono stati desunti dalle prove di trazione eseguite sui prelievi di barra disposti durante la prima campagna di indagini. Per l'acciaio da carpenteria sono stati considerati i parametri di calcolo riportati in tabella.

Parametro	Valore utilizzato nel calcolo [Mpa-KN/m ³]
Modulo di elasticità (E)	21000
Tensione di snervamento (fy)	377,70
Deformazione ultima(ɛu)	0,04
Peso specifico (w)	78,5

Tabella 11: parametri meccanici dell'acciaio.

Nel calcolo viene considerato un comportamento elastico perfettamente plastico con limite di deformazione al 4% (così come previsto dalla norma) e con resistenza pari alla media dei valori misurati ridotti secondo il fattore di confidenza (in corrispondenza di un LC2 per le barre, cioè 1,2):

Figura 17: legame costitutivo utilizzato per l'acciaio.

6.3 TIPOLOGIA DELLA MURATURA E STIMA DELLE CARATTERISTICHE MECCANICHE

Al fine di individuare le tipologie murarie presenti, sono stati eseguiti diversi saggi mediante la rimozione dell'intonaco. Tale ricognizione visiva ha evidenziato la presenza di murature di pietrame locale di origine calcarea con conci di grande e media pezzatura. La tessitura muraria non risulta omogenea ai diversi livelli.

Figura 18: saggi condotti all'interno della palestra da cui si evince la presenza di un architrave tra le finestre.

Le ricognizioni visive dei saggi hanno permesso di accertare che la muratura di pietrame (esplicitamente considerata ai fini della modellazione e delle verifiche strutturali) si limita alle prime due elevazioni (interrato e piano terra), mentre al piano primo si ha una muratura costituita da blocchi forati di calcestruzzo vibrato di cui si è trascurato il contributo. Infine un importante aspetto messo in luce grazie ai saggi è la presenza di importanti architravi, sovrastanti le ampie aperture delle pareti del locale palestra.

Le indagini qualitative sulle murature sono state arricchite da prove endoscopiche che hanno permesso di indagare la tessitura muraria lungo lo spessore e di determinare lo spessore effettivo delle pareti. Le prove endoscopiche hanno evidenziato la presenza di due paramenti (uno interno e uno esterno) scarsamente ammorsati a causa della presenza di cavità nella zona centrale della parete. Per questo motivo nel modello di calcolo gli spessori dei paramenti murari sono inferiori a quelli effettivamente rilevati.

E' stata eseguita una prova di compressione in situ, mediante l'utilizzo di doppi martinetti piatti, atta alla caratterizzazione meccanica della muratura. I risultati ottenuti dalla prova hanno permesso, in accordo a quanto previsto nelle NTC '08 e al livello di conoscenza acquisito, di riferirsi alla tipologia "*Muratura a conci di pietra tenera (tufo, calcarenite, ecc.)*" della tabella C8A.2.1. I valori di resistenza e deformabilità sono stati determinati a partire dai valori contenuti nella tabella C8A.2.1 per la suddetta tipologia facendo riferimento, a titolo cautelativo, ai valori minimi.

La tabella 12, di seguito riportata, riassume i valori di calcolo dei parametri meccanici utilizzati nel calcolo ai fine della caratterizzazione delle murature.

Figura 19: schema della prova e immagine della parete durante l'esecuzione.

Figura 20: risultati della prova in termini di curva di legame sforzo deformazione e modulo di elasticità.

Tabella 12: Valori caratteristici della muratura di laterizio e malta di calce (tabella C8A.2.1)

Parametro	Valore caratteristico
Modulo di elasticità normale: E	900 Mpa
Modulo di elasticità tangenziale: G	300 Mpa
Resistenza a compressione: fc= fcm / FC= fcm / 1.2	1,17 Mpa
Resistenza a taglio: $\tau_c = \tau_c m / FC = \tau_c m / 1.2$	0.023 KN/ m ³
Deformazione ultima a taglio	0.4 %
Peso Specifico	16

7 ANALISI DEI CARICHI

Nel presente capitolo viene riportata l'analisi dei carichi relativa ai diversi ambienti con riferimento alla destinazione d'uso degli stessi. Nelle tabelle relative ai carichi di superficie non sono compresi i pesi propri degli elementi strutturali, già riportati nel capitolo 4 al paragrafo 4.2.

Carichi di superficie

Destinazione d'uso: uffici (non aperta al pubblico)	Valore caratteristico (N/m2)	Ψ2
Permanente non strutturale (CD)	1060	-
Sovraccarico variabile (categoria C1)	3000	0.6

Destinazione d'uso: palestra	Valore caratteristico (N/m2)	Ψ2
Permanente non strutturale (CD)	1060	-
Sovraccarico variabile (categoria C1)	3000	0.6

Solaio di copertura	Valore caratteristico (N/m2)	Ψ2
Permanente non strutturale (CD)	1060	-
Sovraccarico variabile (categoria H1)	500	0.0
Sovraccarico neve (categoria H1)	1000	0.0

Scala	Valore caratteristico (N/m2)	Ψ2
Gradini a sbalzo o pianerottoli sbarco	3750	-
Sovraccarico permanente (CD)	850	-
Sovraccarico variabile (categoria C2)	4000	0.6

<u>Carichi di Linea</u>

Scala - soletta rampante	Valore caratteristico (N/m)	Ψ2
Peso proprio	6250	-
Sovraccarico permanente (CD)	1275	-
Sovraccarico variabile (categoria C2)	4500	0.6

Scala - pianerottoli intermedi	Valore caratteristico (N/m)	Ψ2
Peso proprio	5625	-
Sovraccarico permanente (CD)	1275	-
Sovraccarico variabile (categoria C2)	4500	0.6

Per il dettaglio sulla disposizione dei carichi ai vari piani si rimanda al capitolo 11 paragrafo 11.2.

8 METODOLOGIE DI ANALISI, SOFTWARE E CRITERI DI MODELLAZIONE

Di seguito vengono riportati i principali aspetti legati alla modellazione, effettuata utilizzando il software 3DMacro, prodotto dalla Gruppo Sismica s.r.l.. Il software utilizzato consente la modellazione delle strutture miste muratura calcestruzzo armato e prevede la schematizzazione delle pareti mediante un macro-elemento piano; l'efficacia della modellazione ha avuto diverse validazioni tra cui la più recente [4] riporta per un insieme tipo di edificio in struttura mista un confronto tra risultati sperimentali e le predizioni numeriche ottenute da 3DMacro. Per la descrizione delle procedure di calcolo implementate nel software si rimanda al manuale teorico del programma disponibile presso il sito <u>www.3dmacro.it</u> e alle numerose pubblicazioni scientifiche [1-5].

Bibliografia:

[1] I.Caliò, F. Cannizzaro, E. D'Amore, M. Marletta & B. Pantò (2008). "Un nuovo approccio ai macro-elementi per la stima della resistenza sismica di edifici in struttura mista muratura – calcestruzzo armato: applicazioni ad un caso di studio". Convegno RELUIS - Valutazione e Riduzione della Vulnerabilità Sismica di Edifici Esistenti in C.A. *Roma, 29-30 Maggio.*

[2] **R. Marques, P.B. Lourenco (2011).** "Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings".*Computers and Structures, Vol 89 (21-22) 2079-2091.*

[3] I. Caliò, M. Marletta, B. Pantò (2012). "A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings". *Engineering Structures, Vol 40 (2012) 327-338.*

[4] **R. Marques, P.B. Lourenco (2014).** "Unreinforced and confined masonry buildings in seismic regions: validation of macroelement models and cost analysis". Engineering Structures, Vol 64 (2014) 52-67.

[5] I. Caliò, F. Cannizzaro, P. Colajanni, B. Pantò (2014). "The role of non-structural infill in the seismic behavior of reinforced concrete structure. Atti XV Convegno Nazionale di Ingegneria ingegneria sismica (ANIDIS). Padova, 30 giugno 2013 – 4 luglio 2013.

9 CRITERI DI VERIFICA

Le verifiche sono state eseguite utilizzando il metodo agli Stati Limite, quindi un approccio di tipo prestazionale. Nell'ambito delle strutture soggette ad azioni sismiche si distinguono due stati limite, corrispondenti al raggiungimento di opportuni livelli di danneggiamento della struttura, questi possono essere definiti come segue:

Stato Limite di Danno Limitato (SLD): La struttura subisce danni lievi e perlopiù concentrati in corrispondenza delle parti non strutturali.

Stato Limite Di Danno Severo (SLU): La struttura subisce danni gravi anche alle parti strutturali ma non perde la capacità di sostenere i carichi verticali.

Ulteriori stati limite, diversi da quelli presi in considerazione per il comportamento sismico, possono essere scelti dal committente in concerto con il progettista.

Il coefficiente di sicurezza dalla struttura nei confronti del sisma viene determinato in termini di spostamento. La verifica, eseguita secondo le prescrizioni contenute al punto C7.3.4.1 delle linee guida del TU 2008, consiste nel confrontare la capacità di spostamento dedotta dalla curva di capacità della struttura con la domanda di spostamento determinata mediante il passaggio a un sistema equivalente a un grado di libertà e l'utilizzo degli spettri di progetto.

10 Procedura di stima di vulnerabilità in termini di spostamento

La metodologia di verifica utilizzata consiste nel determinare la domanda di spostamento che viene richiesta al sistema da un sisma di intensità corrispondente allo stato limite considerato. Tale spostamento richiesto verrà quindi confrontato con lo spostamento effettivo del sistema, deducibile dalla curva *pushover*, al momento del raggiungimento del medesimo stato limite.

La struttura si trova in sicurezza nel momento in cui la domanda di spostamento risulta inferiore alla possibilità di deformazione che la struttura possiede. Il coefficiente di sicurezza della struttura rispetto allo stato limite considerato è ottenuto dal rapporto tra la capacità di spostamento e lo spostamento richiesto.

- Calcolo della domanda di spostamento

Il calcolo della richiesta di spostamento, viene eseguito mediante l'utilizzo degli spettri elastici (di intensità corrispondente allo stato limite in esame) e considerando un sistema "ridotto" ad un grado di libertà, "*equivalente*" al sistema reale. Seguendo la procedura descritta al punto C7.3.4.1 delle linee guida del TU 2008.

La curva di capacità del sistema ridotto viene ottenuta scalando la curva di pushover del punto di controllo master, applicando un coefficiente di partecipazione, Γ , definito come segue:

$$\Gamma = \frac{\sum_{i=1}^{N} m_i \cdot \phi_i}{\sum_{i=1}^{N} m_i \cdot \phi_i^2}$$

Dove :

 m_i : massa associata alla i-esimo punto di controllo, che pu essere identificata con la massa di una quota sismica quando il punto di controllo coincide con il baricentro di un impalcato;

φ: vettore rappresentativo del primo modo della struttura nella direzione considerata dell'azione
 sismica, normalizzato al valore unitario della componente relativa al punto di controllo.

Al sistema ridotto viene associata una massa equivalente (m^*) della struttura, definita come segue:

$$m^* = \sum_{i=1}^N m_i \cdot \phi_i$$

La curva del sistema ridotto viene semplificata secondo una bilatera equivalente caratterizzata da :

k^{*} : rigidezza elastica

 F_v^* : limite elastico

 u_{y}^{*} , u_{u}^{*} : spostamento al limite elastico e ultimo

La rigidezza della bilatera equivalente viene fissata pari alla rigidezza secante alla curva del sistema ridotto in corrispondenza di un livello di forza pari al 60% del massimo. Il limite di snervamento viene quindi determinato imponendo l'equivalenza energetica tra i due sistemi.

Figura 21: Equivalenza energetica.

Il periodo del sistema ridotto risulta:

$$T^* = 2\pi \sqrt{\frac{m^*}{k^*}}$$

Per strutture flessibili con T^{*} \geq Tc lo spostamento massimo del sistema bilineare (d_{\max}^*) può essere assunto pari al massimo spostamento di un sistema elastico equivalente ($d_{e,\max}^*$). Tale parametro può essere desunto dallo spettro di progetto in termini di spostamento SDe :

$$d_{\max}^* = d_{e,\max}^* = S_{De}(T^*)$$

Per strutture rigide ($T^* < Tc$) lo spostamento massimo del sistema non lineare viene amplificato rispetto a quello del sistema elastico equivalente utilizzando l'espressione :

$$d_{\max}^{*} = \frac{d_{e,\max}^{*}}{q^{*}} \left[1 + (q^{*} - 1) \frac{T_{C}}{T^{*}} \right] \ge d_{e,\max}^{*}$$

con:

$$q^* = \frac{S_e\left(T^*\right) \cdot m^*}{F_v^*}$$

Lo spostamento del punto di controllo della struttura reale si ottiene :

 $d_{\max} = \Gamma \cdot d_{\max}^*$

- Calcolo della capacità di spostamento

Le capacità di spostamento della struttura per ciascuno stato limite vengono identificati, sulla curva di capacità, facendo riferimento a quanto previsto al punto C7.8.1.5.4 del Testo Unico 2008. Considerando che la struttura resistente principale è composta sia dai telai in calcestruzzo armato che dalle pareti in muratura, si considerano i criteri previsti dalle NTC per entrambe le tipologie. Pertanto le capacità di spostamento sono state determinate considerando i seguenti eventi :

- Capacità di spostamento allo SLC (d_u): spostamento del punto di controllo minimo tra:

a) raggiungimento di una riduzione del taglio alla base pari al 20% del taglio massimo;b) raggiungimento nella prima sezione in c.a. di una rotazione plastica pari al valore ultimo

fissato nel Testo Unico 2008 (punto C8A.6.1.);

- Capacità di spostamento allo SLV (d_u): spostamento del punto di controllo minimo tra:

a) raggiungimento di una riduzione del taglio alla base pari al 20% del taglio massimo;
b) raggiungimento nella prima sezione in c.a. di una rotazione plastica pari al 75% del valore ultimo fissato nel Testo Unico 2008 (punto C8A.6.1.);

- Capacità di spostamento allo SLD (d_d): valore di spostamento del punto di controllo minore tra quello corrispondente al raggiungimento della massima forza e quello per il quale lo spostamento relativo tra due punti sulla stessa verticale appartenenti a piani consecutivi eccede il valore dello 0.3% dell'altezza di piano.
- Capacità di spostamento allo SLO (d_o): valore di spostamento del punto di controllo minore tra quello corrispondente al raggiungimento della massima forza e quello per il quale lo spostamento relativo tra due punti sulla stessa verticale appartenenti a piani consecutivi eccede il valore dello 0.2% dell'altezza di piano (2/3 rispetto al limite fissato per lo SLD punto 7.3.7.2).

Per ciascun stato limite verrà definito un coefficiente di sicurezza, espresso sia in termini di spostamento (paragrafo 14.1) sia in termini di PGA (paragrafo 14.4).

11 DETTAGLI DI MODELLAZIONE

Di seguito si riportano in forma grafica e tabellare le principali caratteristiche geometriche e di implementazione del modello numerico adottato per la struttura in oggetto. Tali immagini, sebbene non essenziali ai fini della documentazione richiesta, si ritengono utili a favorire la lettura dei risultati riportati nei capitoli successivi e dei tabulati di calcolo allegati.

(b)

Figura 22: Vista dall'alto del modello geometrico (a) e computazionale (b).

(a)

Figura 23: Vista assonometrica del modello geometrico (a) e computazionale (b).

(a)

Figura 24: Vista assonometrica del modello geometrico (a) e computazionale (b).

11.1 SCHEMI RESISTENTI

Si riportano di seguito le piante dell'edificio con l'indicazione e la denominazione degli elementi resistenti (setti murari, telai).

Figura 25: Pianta a quota 400 cm con l'indicazione dei numeri attribuiti alle pareti.

Figura 26: Pianta a quota 850 cm con l'indicazione dei numeri attribuiti alle pareti.

Figura 27: Pianta a quota 1250 cm con l'indicazione dei numeri attribuiti alle pareti.

Figura 28: Pianta a quota 1400 cm con l'indicazione dei numeri attribuiti alle pareti.

Parete 1
100 [11]	112	126	128	129 908	210	211	212	219	347	
482 67	454	455	456	47 252	439	440	441	45 66	437	
d	105	106	107	bBd	165	166	167		-	-
483		463		292 341		448		328 375	438	20 10 10
481 857	458	459	460	46 <mark>8</mark> 42	443	444	445	52	436	
422 -28	429	430	431	45	446	447	448	44	454	
434 8	418	419	420	** <mark>\$</mark> **	403	404	405	458	401	
	424	425	426	the	438	442	443		_	-
435 435		427		451 451 45		412		456 45	402	
433 🛱n	422	423	424	420006	407	408	409	415	400	
366 770	502	507	509	51 64	465	474	487	45	463	
300 0	305	5/1	300		304	300	301	-	350	-
367 250		381		37 <mark>25</mark> 83 37 <mark>25</mark> 83		389		493 49	399	
365 0		380	373	2 <mark>1</mark> 5	393	394	395	489	397	

Parete 7

482	103	486	120	132		125		70	150	147
295		236		153						173
-		- 182 §235	184 234	185- 236	186 227	196 226	199 228	- 220 210	236 170	238 -
316		2 233		2378	225		229	169		221
_		9232 388 112	238 479 111	239 <mark>0 481</mark> 113	224 262 137	230 275 127	231 280 142	168 250 150	222 252 149	223 253 151
325		5110 55		114	126		143	<mark>(</mark> 148		160
		5 109	115	1168	125	144	145	146	161	162

Parete 11

Parete 9

Parete 12

Parete 13

11.2 CARICHI

Di seguito si riportano i carichi gravitazionali considerati nel modello. Non vengono riportati i carichi derivanti dagli elementi strutturali, calcolati in automatico dal programma. Ciascun carico può contenere molteplici voci di carico. Ciascuna voce di carico viene assegnata a una condizione di carico tra quelle definite.

carichi	di a	area
---------	------	------

Nome	Voce di carico	Condizione di carico	Тіро	Valore kN/m ²	Destinazione d'uso	c	Coeffic combir	ienti d nazion	li e
						Ψ0	Ψ1	Ψ2	ψ_{2sis}
Uffici_b2	permanenti	Not structural dead CD	Not structural dead c.d.	1.90	-	1.00	1.00	1.00	1.00
Uffici_b2	var	Variable	B2. Offices	3.00	B. Offices	0.70	0.50	0.30	0.30
Palestra_C2	permanenti	Not structural dead CD	Not structural dead c.d.	1.06	-	1.00	1.00	1.00	1.00
Palestra_C2	var	Variable	C1. Spaces susceptible to crowding	3.00	C. Spaces susceptible to crowding	0.70	0.70	0.60	0.60
Copertura	permanenti	Not structural dead CD	Not structural dead c.d.	1.22	-	1.00	1.00	1.00	1.00
Copertura	variabili	Variable	H1. Roofs and attics	0.50	H. Roofs	0.00	0.00	0.00	0.00
Copertura	neve	Variable	Personalizzato	1.00	Snow (altitude = 1000 m above sea)	0.50	0.20	0.00	0.00
pianerottolo_sbarc o_scala	gradini a sbalzo	Not structural dead CD	Not structural dead c.d.	3.75	-	1.00	1.00	1.00	1.00
pianerottolo_sbarc o_scala	var	Variable	C2.Spaces susceptible to crowding	4.00	C.Spaces susceptible to crowding	0.70	0.70	0.60	0.60
pianerottolo_sbarc o_scala	pavimento	Structural dead	Structural dead	0.65	-	1.00	1.00	1.00	1.00
pianerottolo_sbarc o_scala	intonaco	Structural dead	Structural dead	0.20	-	1.00	1.00	1.00	1.00

<u>carichi di linea</u>

					Coeffic	ienti di	combir	nazione
Nome	Voce di carico	Condizione di carico	Valore	Destinazione d'uso				
					Ψο	Ψ1	Ψ2	Ψ2sis
			kN/m					
rampa	struttura	Structural dead	6.25	-	1.00	1.00	1.00	1.00
rampa	permanente	Not structural dead CD	1.28	-	1.00	1.00	1.00	1.00
rampa	variabile	Variable	4.50	C. Spaces susceptible to crowding	0.70	0.70	0.60	0.60
pianerottolo	struttura	Structural dead	5.63	-	1.00	1.00	1.00	1.00
pianerottolo	permanente	Not structural dead CD	1.28	-	1.00	1.00	1.00	1.00
pianerottolo	variabile	Variable	4.50	C. Spaces susceptible to crowding	0.70	0.70	0.60	0.60

Negli schemi che seguono viene riportata la dislocazione dei carichi gravitazionali

Pianta a quota 400 cm: carichi di area applicati ai solai.

Pianta a quota 850 cm: carichi di area applicati ai solai.

Pianta a quota 1250 cm: carichi di area applicati ai solai.

Pianta a quota 1400 cm: carichi di area applicati ai solai.

11.3 FORMATI

Le figure seguenti mostrano la distribuzione dei formati per le varie tipologie di murature adottate all'interno del modello.

Parete 1

Parete 2

Parete 3

Parete 4

Parete 5

Parete 6

Parete 7

Parete 8

Parete 10

Parete 11

Parete 9

Parete 12

Legenda Formati Murature

wall50	
wall30	

Legenda Formati Aste

beam2D	PIL_tel_int_primo	TR_30_60_2f12		Cordolo30_40
Beam3D	PIL_perim_terra	TR_H60_centr_n		TR_30_80_nodi
Column3D	PIL_perim_primo	TR_30_75_centr		TR_30_60_nodi
PIL_palestra_interr	TR_DAELIMINARE	TR_30_60_4f12		TR_tel_est_nodo
PIL_palestra_terra	TR_30_85_palestra	TR_30_60_5f18		30_30
PIL_palestra_primo	TR_30_50_palestra	TR_tel_est		TR_ginocchio_25_80
PIL_vanoscala_interr	TR_30_60_palestra	TR_tel_int		achitrave
PIL_vanoscala_terra	TR_30_80_palestra	TR_30_75_centr_n		30_90
PIL_vanoscala_primo	TR_H60_centr	TR_30_60_5f18_n		
PIL_tel_est_terra	TR_30_45_2f12		-	

Legenda Formati Fondazioni

LineFoundation1	
PointFoundation1	

Legenda Formati Fondazioni

11.4 ANALISI SISMICHE (Push-over)

In accordo a quanto previsto nella norma, sono state condotte analisi statiche non lineari indipendenti lungo le due direzioni principali dell'edificio: direzione longitudinale (X) e direzione trasversale (Y), considerando l'effetto delle eccentricità aggiuntive al 5% in entrambi i versi. Le analisi sono state condotte con due differenti distribuzioni di forze, una principale e una secondaria. In accordo al punto C8.7.1.4 della circolare "Metodi di analisi globale e di verifica", è stata considerata la prima distribuzione del Gruppo 1 e la prima del Gruppo 2 (come definiti al punto 7.3.4.1), indipendentemente dalla percentuale di massa partecipante sul primo modo. In particolare:

- Distribuzione principale (gruppo 1): distribuzione proporzionale alle masse e alle altezze come definite al punto 7.3.3.2, corrispondente a una distribuzione di accelerazione lineare lungo l'altezza;
- Distribuzione secondaria (gruppo 2): distribuzione uniforme di forze, da intendersi come derivata da una distribuzione uniforme di accelerazioni lungo l'altezza della costruzione.

Analisi	Analisi	Direzione	Eccentricità	Distribuzione	Target Forze	Target Spostamenti
	iniziale				(%)	(mm)
Pushover+X Massa + e	Vert	+X	+5%	Gruppo 1	50.00	100.00
Pushover-X Massa + e	Vert	-X	+5%	Gruppo 1	50.00	100.00
Pushover+Y Massa + e	Vert	+Y	+5%	Gruppo 1	20.00	100.00
Pushover-Y Massa + e	Vert	-Y	+5%	Gruppo 1	20.00	100.00
Pushover+X Mass/height+ e	Vert	+X	+5%	Gruppo 2	50.00	100.00
Pushover-X Mass/height + e	Vert	-X	+5%	Gruppo 2	50.00	100.00
Pushover+Y Mass/height+ e	Vert	+Y	+5%	Gruppo 2	20.00	100.00
Pushover-Y Mass/height + e	Vert	-Y	+5%	Gruppo 2	20.00	100.00
Pushover+X Mass – e	Vert	+X	-5%	Gruppo 1	50.00	100.00
Pushover-X Mass – e	Vert	-X	-5%	Gruppo 1	50.00	100.00
Pushover+Y Mass – e	Vert	+Y	-5%	Gruppo 1	20.00	100.00
Pushover-Y Mass – e	Vert	-Y	-5%	Gruppo 1	20.00	100.00
Pushover+X Mass/heigth- e	Vert	+X	-5%	Gruppo 2	50.00	100.00
Pushover-X Mass/heigth - e	Vert	-X	-5%	Gruppo 2	50.00	100.00
Pushover+Y Mass/heigth - e	Vert	+Y	-5%	Gruppo 2	20.00	100.00
Pushover-Y Mass/heigth - e	Vert	-Y	-5%	Gruppo 2	20.00	100.00

Tabella 13:Elenco delle analisi sismiche eseguite

11.5 ANALISI PER CARICHI VERTICALI

Sono state eseguite due analisi statiche non lineari per carichi gravitazionali: nella prima (vert) sono stati applicati i carichi verticali corrispondenti a una combinazione "quasi permanente" ed è servita come base per l'esecuzione delle analisi push-over; nella seconda (Static-SLU) alla struttura sono stati applicati i carichi verticali corrispondenti a una combinazione di carico "rara" ed è servita per verificare la sicurezza dell'edificio in condizioni statiche.

Entrambe le analisi sono state concluse correttamente pertanto non è stato necessario procedere con ulteriori verifiche dei meccanismi duttili (presso flessione delle aste in c.a. e dei pannelli murari e taglio nel piano dei pannelli murari) perché esplicitamente gestiti, durante l'analisi, mediante i legami costitutivi assegnati ai materiali. Le sollecitazioni riscontrate nell'analisi Statica-SLU sono state utilizzate per eseguire le verifiche nei confronti delle rotture a taglio delle sezioni in c.a., riportate nel capitolo 15.

12 LE PROPRIETA' DINAMICHE IN AMBITO ELASTICO LINEARE

Al fine di dimostrare che il contributo delle pareti in condizioni dinamiche non può e non deve essere trascurato, in questo paragrafo si riporta un confronto tra le proprietà dinamiche dell'edificio considerando il contributo del telaio interagente con le pareti e quelle dello stesso edificio considerato come una semplice struttura intelaiata, ignorando l'incremento di resistenza e di massa dovuto alle pareti inserite nei telai.

12.1 CARATTERISTICHE DINAMICHE DEL MODELLO IN STRUTTURA MISTA

Nel presente paragrafo si riportano i parametri modali del modello in struttura mista. Dai dati riportati in tabella si evince che sono necessari sei modi di vibrare per raggiungere un livello di massa partecipante pari al 75% di quella totale.

Modo	T [sec]	w [rad/sec]	Mx [kN*sec^2/cm]	My [kN*sec^2/cm]	Mz [kN*sec^2/cm]	Mx [%]	My [%]	Mz [%]	Mx Sum [%]	My Sum [%]
1	0.430	14.603	0.000	2.279	0.000	0.00	32.35	0.00	0.00	32.35
2	0.291	21.591	3.988	0.010	0.000	35.66	0.14	0.00	35.66	32.49
3	0.197	31.929	0.001	0.423	0.000	0.01	6.01	0.00	35.67	38.50
4	0.169	37.112	0.005	1.112	0.004	0.05	15.79	0.02	35.72	54.29
5	0.139	45.141	1.912	1.005	0.000	17.10	14.28	0.00	52.82	68.57
6	0.127	49.422	2.459	0.685	0.000	21.99	9.72	0.00	74.81	78.29

Tabella 14:Modi e frequenze di vibrazione con le relative masse partecipanti.

Di seguito si riportano le viste in pianta e le viste assonometriche dei modi di vibrare della struttura con la presenza delle pareti in muratura con riferimento ai primi sei modi.

primo modo (T=0,43 sec)

Secondo modo (T=0,29 sec)

Terzo modo (T=0,197 sec)

Quarto modo (T=0,169 sec)

Quinto modo (T=0,139 sec)

Sesto modo (T=0,127 sec)

Figura 29:forme modali del modello in struttura mista.

12.2 CARATTERISTICHE DINAMICHE DEL MODELLO CON SOLO TELAIO

Nel presente paragrafo si riportano i parametri modali del modello con solo telaio. Dai dati riportati in tabella si evince che sono sufficienti i primi tre modi di vibrare per garantire una percentuale di massa partecipante, in entrambe le direzioni, pari al 70%.

Modo	T [sec]	w [rad/sec]	Mx [kN*sec^2/cm]	My [kN*sec^2/cm]	Mz [kN*sec^2/cm]	Mx [%]	My [%]	Mz [%]	Mx Sum [%]	My Sum [%]	Mz Sum [%]
	0.591	10.629	4.271	0.537	0.000	57.50	9.69	0.00	57.50	9.69	0.00
2	0.550	11.433	0.923	2.419	0.000	12.43	43.70	0.00	69.93	53.39	0.00
3	0.401	15.657	0.001	1.596	0.000	0.01	28.83	0.00	69.94	82.22	0.00
4	0.223	28.205	0.006	0.235	0.000	0.08	4.24	0.00	70.02	86.46	0.00
5	0.218	28.788	1.626	0.001	0.000	21.88	0.01	0.00	91.90	86.48	0.00
6	0.210	29.873	0.003	0.117	0.000	0.04	2.12	0.00	91.94	88.59	0.00

Tabella 15:Modi e frequenze di vibrazione con le relative masse partecipanti.

Primo modo (T=0,591 sec)

Secondo modo (T=0,550 sec)

Terzo modo (T=0,401 sec)

Quarto modo (T=0,223 sec)

Quinto modo (T=0,218 sec)

Sesto modo (T=0,210 sec)

Figura 30:forme modali del modello con solo telaio.

Dall'analisi dei risultati e confronto delle forme modali si evince la sostanziale differenza delle proprietà dinamiche ottenute dalle due diverse modellazioni. In particolare la presenza delle pareti oltre a variare sensibilmente i periodi della struttura, comporta una sostanziale modifica delle forme modali associate e delle corrispondenti masse partecipanti. Tale circostanza conferma che nella valutazione delle vulnerabilità sismica dell'edificio occorre considerare un modello globale che tenga conto del contributo delle pareti di chiusura dei campi dei telai; si ritiene pertanto inutile e fuorviante condurre l'analisi sul solo telaio in quanto non rappresentativa del comportamento reale dell'edificio.

13 STIMA DELLA CAPACITA' DELL'EDIFICIO IN CONDIZIONI SISMICHE

Nel presente capitolo vengono riportati i risultati delle analisi statiche non-lineari di tipo sismico (*push-over*) eseguite sul modello dell'edificio nel quale sono state considerate esplicitamente le murature perimetrali portanti. In particolare si riportano i meccanismi di collasso, deducibili dall'osservazione delle deformate a collasso, con relativi indicatori di danno.

Figura 31: indicatori del danno per i pannelli murari e delle aste.

Le curve di capacità vengono espresse in termini di coefficiente di taglio alla base (Cb), proporzionale al taglio alla base dell'edificio lungo la direzione di carico, e reso adimensionale in seguito al rapporto con il

peso sismico dell'edificio stesso:

$$C_b = \frac{V_b}{W}$$

Il grafico della curva riporta l'andamento di detto coefficiente, in funzione dello spostamento, lungo la direzione di carico, dei punti di controllo scelti.

Di seguito si riporta il dettaglio dei punti di controllo utilizzati nelle analisi :

Control point	Position			Massa
	X (m)	Y (m)	Z (m)	kNs²/cm
Center of gravity Floor 174 level 850 cm	-161.63	-89.63	8.50	9.12
Center of gravity Floor 185 level 1250 cm	-168.86	-90.35	12.50	1.56
Center of gravity Floor 189 level 1250 cm	-137.15	-88.63	12.50	1.70
Center of gravity Floor 194 level 1400 cm	-153.14	-88.16	14.00	1.19

13.1 CURVE DI CAPACITA'

Nella tabella di riepilogo seguente vengono forniti i valori delle grandezze maggiormente significative ai fini della resistenza sismica:

- Il taglio massimo sopportato dalla struttura (V_{b,u});
- Il coefficiente di taglio alla base massimo (*C*_{b,u});
- Lo spostamento massimo fra tutti i punti di controllo nella direzione di carico (u_{max}) ;
- La massima deriva di piano (δ_{ultimo}).

Analisi	$V_{b,ultimo}$	W	C _{b,ultimo}	U _{max}	δ_{ultimo}
	kN	kN		ст	%
Pushover+X Massa + e	3552.35	17170.51	0.21	6.44	0.54
Pushover-X Massa + e	3637.97	17170.51	0.21	10.00	0.53
Pushover+Y Massa + e	2423.56	17170.51	0.14	9.90	0.76
Pushover-Y Massa + e	2596.36	17170.51	0.15	9.19	0.92
Pushover+X Mass and height + e	2584.15	17170.51	0.15	10.00	1.29
Pushover-X Mass and height + e	2654.57	17170.51	0.15	10.00	0.92
Pushover+Y Mass and height + e	1902.81	17170.51	0.11	9.72	1.13
Pushover-Y Mass and height + e	2038.04	17170.51	0.12	8.61	1.81
Pushover+X Mass – e	3599.81	17170.51	0.21	10.00	0.50
Pushover-X Mass – e	3671.94	17170.51	0.21	10.00	0.54
Pushover+Y Mass – e	2525.27	17170.51	0.15	9.41	0.70
Pushover-Y Mass – e	2545.34	17170.51	0.15	9.95	1.20
Pushover+X Mass and heigth - e	2584.14	17170.51	0.15	10.00	0.78
Pushover-X Mass and heigth - e	2661.58	17170.51	0.16	10.00	0.90
Pushover+Y Mass and heigth - e	1917.71	17170.51	0.11	8.79	1.62
Pushover-Y Mass and heigth - e	2093.10	17170.51	0.12	10.00	1.06

Tabella 16: Riepilogo dei risultati delle analisi sismiche

Di seguito si riportano le curve di capacità relative alle analisi sismiche eseguite:

Figura 33: Analisi pushover "Pushover-X Massa + e" : curva di capacita'.

Figura 35: Analisi pushover "Pushover-Y Massa + e" : curva di capacita'.

Figura 37: Analisi pushover "Pushover-X Mass and height + e" : curva di capacita'.

Figura 39: Analisi pushover "Pushover-Y Mass and height + e" : curva di capacita'.

Figura 41: Analisi pushover "Pushover-X Mass - e" : curva di capacita'.

Figura 43: Analisi pushover "Pushover-Y Mass - e" : curva di capacita'.

Figura 45: Analisi pushover "Pushover-X Mass and heigth - e" : curva di capacita'.

spostamento (cm)

2.5

5.5

6.5

4.5

0.5

1.5

Figura 47: Analisi pushover "Pushover-Y Mass and heigth - e" : curva di capacita'.

13.2 DEFORMATE A COLLASSO

Nel presente paragrafo si riportano le deformate a collasso per ciascuna analisi delle pareti maggiormente sollecitate. In particolare, si farà riferimento alle analisi con distribuzione di forze proporzionali alle masse e carico diretto nel verso positivo.

(b)

Figura 48: Analisi in direzione +x e carico proporzionale alle masse: viste assonometriche delle deformate a globali a collasso; vista assonometrica prospetto su strada (a) e cortile interno (b).

Figura 49: Analisi in direzione +x e carico proporzionale alle masse: viste assonometriche delle deformate a globali a collasso; vista frontale(a), vista dall'alto (b).

Figura 50: Analisi in direzione +x e carico proporzionale alle masse: deformata a collasso della parete 8.

Figura 51: Analisi in direzione +x e carico proporzionale alle masse: deformata a collasso della parete 2.

Di seguito si riportano le deformate a collasso delle analisi in direzione trasversale (direzione Y). In questo caso il meccanismo di collasso è fortemente condizionato dal segno dell'eccentricità accidentale.

Figura 52: Eccentricità positiva: viste assonometriche della deformata a collasso globale.
Si osserva che nel caso di eccentricità positiva (figure precedenti) il danno si concentra nelle pareti di estremità della zona centrale e della zona palestra.

Figura 53: Eccentricità positiva: vista laterale della deformata a collasso globale.

Figura 54: Eccentricità positiva: vista in pianta della deformata a collasso globale.

Figura 55: Deformate a collasso della parete 4 (a) e della parete 3 (b).

Nel caso di analisi con eccentricità negativa (figure che seguono) il danno si concentra nei telai della zona autorimessa. Tuttavia anche le pareti della zona palestra risultano avere un forte impegno plastico dei pannelli in muratura.

Figura 56: Eccentricità negativa: vista in pianta della deformata a collasso globale.

Figura 57: Eccentricità negativa: vista assonometrica della deformata a collasso globale.

Figura 58: Eccentricità negativa: viste laterali del meccanismo di collasso globale.

Figura 59: Configurazione della parete 12 in corrispondenza della capacità relativa allo stato limite SLC.

Figura 60: Configurazione della parete 13 in corrispondenza della capacità relativa allo stato limite

14 VERIFICHE SISMICHE GLOBALI

14.1 STIMA PER CIASCUNA DIREZIONE DI CARICO

Nel presente paragrafo si riportano i risultati della verifica sismica della struttura. Tale operazione consiste nel confrontare l'impegno richiesto, in termini di spostamento, dal sisma di progetto con la capacità disponibile della struttura, in corrispondenza del raggiungimento degli stati limite considerati.

I dettagli relativi al calcolo della capacità e della domanda di spostamento sono riportati nel capitolo "Criteri di verifica". Nelle figure seguenti vengono riportate, per ciascuna analisi eseguita, i grafici delle curve di *push-over* rispettivamente relative al sistema reale, al sistema ridotto ed alla bilatera equivalente. Si riporta inoltre graficamente, per ciascuno degli stati limite, il confronto - in termini di spostamento - tra capacità e richiesta. Vicino a ognuna di tali linee è riportato un simbolo grafico per indicare a quale stato limite si riferisce. Tale simbolo è di colore grigio in corrispondenza della capacità, di colore verde in corrispondenza della richiesta (se questa è inferiore alla capacità), di colore rosso in corrispondenza della richiesta (se questa è oltre la capacità).

L'analisi della risposta sismica globale può essere effettuata con uno dei metodi di cui al par. 7.3 delle NTC, con le precisazioni e restrizioni indicate al par. 7.8.1.5. In particolare, per le costruzioni esistenti e' possibile utilizzare l'analisi statica non lineare, assegnando come distribuzioni principale e secondaria, rispettivamente, la prima distribuzione del Gruppo 1 e la prima del Gruppo 2, indipendentemente dalla percentuale di massa partecipante sul primo modo (cfr. C8.7.1.4).

Figura 61: Analisi pushover "Pushover+X Massa + e" : stima della vulnerabilita' sismica.

Figura 62: Analisi pushover "Pushover-X Massa + e" : stima della vulnerabilita' sismica.

Figura 63: Analisi pushover "Pushover+Y Massa + e" : stima della vulnerabilita' sismica.

Figura 64: Analisi pushover "Pushover-Y Massa + e" : stima della vulnerabilita' sismica.

Figura 65: Analisi pushover "Pushover+X Mass and height + e" : stima della vulnerabilita' sismica.

Figura 66: Analisi pushover "Pushover-X Mass and height + e" : stima della vulnerabilita' sismica.

Figura 67: Analisi pushover "Pushover+Y Mass and height + e" : stima della vulnerabilita' sismica.

Figura 68: Analisi pushover "Pushover-Y Mass and height + e" : stima della vulnerabilita' sismica.

Figura 69: Analisi pushover "Pushover+X Mass - e" : stima della vulnerabilita' sismica.

Figura 70: Analisi pushover "Pushover-X Mass - e" : stima della vulnerabilita' sismica.

Figura 71: Analisi pushover "Pushover+Y Mass - e" : stima della vulnerabilita' sismica.

Figura 72: Analisi pushover "Pushover-Y Mass - e" : stima della vulnerabilita' sismica.

Figura 74: Analisi pushover "Pushover-X Mass and heigth - e" : stima della vulnerabilita' sismica.

Figura 75: Analisi pushover "Pushover+Y Mass and heigth - e" : stima della vulnerabilita' sismica.

Figura 76: Analisi pushover "Pushover-Y Mass and heigth - e" : stima della vulnerabilita' sismica.

Nelle tabelle che seguono viene riportato un riepilogo dei risultati delle stime di vulnerabilità con riferimento ai passaggi fondamentali:

Analisi	Sistema reale			Г	Sistema ridotto			
	m	C _{b,max}	δ_{u}		m	C _{b,max}	δ_{u}	
	kNs²/cm		cm		kNs²/cm		cm	
Pushover+X Massa + e	17.51	0.21	6.44	1.07	12.66	0.18	6.02	
Pushover-X Massa + e	17.51	0.21	10.00	1.07	12.66	0.18	9.32	
Pushover+Y Massa + e	17.51	0.14	9.46	1.07	12.66	0.12	8.83	
Pushover-Y Massa + e	17.51	0.15	7.65	1.07	12.66	0.13	7.14	
Pushover+X Mass and height + e	17.51	0.15	10.00	1.07	12.66	0.13	9.34	
Pushover-X Mass and height + e	17.51	0.15	10.00	1.07	12.66	0.13	9.32	
Pushover+Y Mass and height + e	17.51	0.11	9.60	1.07	12.66	0.10	8.96	
Pushover-Y Mass and height + e	17.51	0.12	5.90	1.07	12.66	0.11	5.50	
Pushover+X Mass – e	17.51	0.21	10.00	1.07	12.66	0.18	9.34	
Pushover-X Mass – e	17.51	0.21	10.00	1.07	12.66	0.18	9.32	
Pushover+Y Mass – e	17.51	0.15	8.14	1.07	12.66	0.13	7.60	
Pushover-Y Mass – e	17.51	0.15	9.19	1.07	12.66	0.13	8.58	
Pushover+X Mass and heigth – e	17.51	0.15	10.00	1.07	12.66	0.13	9.34	
Pushover-X Mass and heigth – e	17.51	0.16	10.00	1.07	12.66	0.13	9.32	
Pushover+Y Mass and heigth – e	17.51	0.11	6.37	1.07	12.66	0.10	5.95	
Pushover-Y Mass and heigth – e	17.51	0.12	10.00	1.07	12.66	0.11	9.33	

Tabella 17: Determinazione del sistema ridotto.

Legenda:

m : massa sismica

C_{b max} : coefficiente di taglio alla base massimo

 δ_u : spostamento massimo

Г

: fattore di partecipazione

85

Analisi	К*	Т*	F* _y	δ*γ	δ* _u	μ*
	kN/m	S	kN	cm	ст	
Pushover+X Massa + e	197527.20	0.50	3051.89	1.55	5.17	3.34
Pushover-X Massa + e	206504.00	0.49	3072.51	1.49	4.82	3.24
Pushover+Y Massa + e	161380.40	0.56	2143.81	1.33	6.98	5.25
Pushover-Y Massa + e	162063.20	0.56	2285.86	1.41	6.46	4.58
Pushover+X Mass and height + e	133056.30	0.61	2185.35	1.64	9.34	5.69
Pushover-X Mass and height + e	134949.30	0.61	2227.24	1.65	6.19	3.75
Pushover+Y Mass and height + e	114173.70	0.66	1681.07	1.47	8.96	6.08
Pushover-Y Mass and height + e	116996.90	0.65	1818.04	1.55	5.50	3.54
Pushover+X Mass – e	193649.80	0.51	3078.51	1.59	5.02	3.16
Pushover-X Mass – e	205843.70	0.49	3101.51	1.51	4.90	3.25
Pushover+Y Mass – e	160143.30	0.56	2199.67	1.37	6.24	4.54
Pushover-Y Mass – e	160080.20	0.56	2236.77	1.40	8.58	6.14
Pushover+X Mass and heigth - e	132387.90	0.61	2227.27	1.68	5.94	3.53
Pushover-X Mass and heigth - e	134796.90	0.61	2225.84	1.65	6.12	3.71
Pushover+Y Mass and heigth - e	115796.20	0.66	1712.69	1.48	5.95	4.02
Pushover-Y Mass and heigth - e	113224.00	0.66	1807.25	1.60	9.33	5.85

Tabella 18: Determinazione del sistema bilineare equivalente

Legenda:

K^{*} : rigidezza elastica

- F_{y}^{*} : sforza di snervamento
- δ^*_{u} : spostamento ultimo
- T^{*} : periodo del sistema
- $\delta^*_{\ y} \qquad$: spostamento di snervamento
- μ^{*} : duttilità ultima del sistema

Tabella 19: Stima di vulnerabilit

Analisi	Stato				Capacita'	α			
	limite	PGA/g	S	q*	d* _{e,}	d* _{max}	d _{max}	d _{sL}	
Pushover+X Massa + e	SLO	0.05	1.00	1.00	0.46	0.46	0.50	1.26	2.54
Pushover+X Massa + e	SLD	0.08	1.00	1.00	0.69	0.69	0.74	2.11	2.87
Pushover+X Massa + e	SLV	0.29	1.00	1.00	3.86	3.86	4.14	4.55	1.10
Pushover+X Massa + e	SLC	0.40	1.00	3.87	5.99	6.03	6.46	5.47	0.85
Pushover-X Massa + e	SLO	0.05	1.00	1.00	0.45	0.45	0.49	0.91	1.87
Pushover-X Massa + e	SLD	0.08	1.00	1.00	0.67	0.67	0.72	1.58	2.19
Pushover-X Massa + e	SLV	0.29	1.00	1.00	3.78	3.78	4.04	4.31	1.07
Pushover-X Massa + e	SLC	0.40	1.00	3.85	5.73	5.87	6.29	5.10	0.81
Pushover+Y Massa + e	SLO	0.05	1.00	1.00	0.51	0.51	0.55	0.74	1.35
Pushover+Y Massa + e	SLD	0.08	1.00	1.00	0.76	0.76	0.81	3.19	3.91
Pushover+Y Massa + e	SLV	0.29	1.00	1.00	4.27	4.27	4.58	5.87	1.28
Pushover+Y Massa + e	SLC	0.40	1.00	1.00	6.69	6.69	7.17	7.40	1.03
Pushover-Y Massa + e	SLO	0.05	1.00	1.00	0.51	0.51	0.55	0.53	0.97
Pushover-Y Massa + e	SLD	0.08	1.00	1.00	0.76	0.76	0.81	0.90	1.10
Pushover-Y Massa + e	SLV	0.29	1.00	1.00	4.26	4.26	4.57	5.39	1.18
Pushover-Y Massa + e	SLC	0.40	1.00	1.00	6.68	6.68	7.16	6.84	0.96
Pushover+X Mass and height	SLO	0.05	1.00	1.00	0.56	0.56	0.60	0.96	1.59
Pushover+X Mass and height	SLD	0.08	1.00	1.00	0.84	0.84	0.90	1.62	1.81
Pushover+X Mass and height	SLV	0.29	1.00	1.00	4.70	4.70	5.04	5.16	1.02
Pushover+X Mass and height	SLC	0.40	1.00	1.00	7.37	7.37	7.90	10.01	1.27
Pushover-X Mass and height +	SLO	0.05	1.00	1.00	0.56	0.56	0.60	0.79	1.31
Pushover-X Mass and height +	SLD	0.08	1.00	1.00	0.83	0.83	0.89	1.22	1.37
Pushover-X Mass and height +	SLV	0.29	1.00	1.00	4.67	4.67	5.00	5.27	1.05
Pushover-X Mass and height +	SLC	0.40	1.00	1.00	7.32	7.32	7.84	6.56	0.84
Pushover+Y Mass and height	SLO	0.05	1.00	1.00	0.61	0.61	0.65	0.67	1.03
Pushover+Y Mass and height	SLD	0.08	1.00	1.00	0.90	0.90	0.97	2.82	2.91
Pushover+Y Mass and height	SLV	0.29	1.00	1.00	5.08	5.08	5.44	6.03	1.11

Analisi	Stato			Rich		Capacita'	α		
	limite	PGA/g	S	q*	d* _{e,}	d* _{max}	d _{max}	d _{SL}	-
Pushover+Y Mass and height	SLC	0.40	1.00	1.00	7.96	7.96	8.53	9.60	1.13
Pushover-Y Mass and height +	SLO	0.05	1.00	1.00	0.60	0.60	0.65	0.52	0.80
Pushover-Y Mass and height +	SLD	0.08	1.00	1.00	0.89	0.89	0.96	0.85	0.89
Pushover-Y Mass and height +	SLV	0.29	1.00	1.00	5.02	5.02	5.37	5.90	1.10
Pushover-Y Mass and height +	SLC	0.40	1.00	1.00	7.86	7.86	8.42	5.90	0.70
Pushover+X Mass - e	SLO	0.05	1.00	1.00	0.47	0.47	0.50	1.19	2.38
Pushover+X Mass - e	SLD	0.08	1.00	1.00	0.69	0.69	0.74	2.02	2.72
Pushover+X Mass - e	SLV	0.29	1.00	1.00	3.90	3.90	4.18	4.40	1.05
Pushover+X Mass - e	SLC	0.40	1.00	3.84	6.11	6.11	6.54	5.31	0.81
Pushover-X Mass - e	SLO	0.05	1.00	1.00	0.45	0.45	0.49	0.97	1.99
Pushover-X Mass - e	SLD	0.08	1.00	1.00	0.67	0.67	0.72	1.65	2.29
Pushover-X Mass - e	SLV	0.29	1.00	1.00	3.78	3.78	4.05	4.30	1.06
Pushover-X Mass - e	SLC	0.40	1.00	3.81	5.74	5.88	6.30	5.19	0.82
Pushover+Y Mass - e	SLO	0.05	1.00	1.00	0.51	0.51	0.55	0.58	1.05
Pushover+Y Mass - e	SLD	0.08	1.00	1.00	0.76	0.76	0.82	0.90	1.10
Pushover+Y Mass - e	SLV	0.29	1.00	1.00	4.29	4.29	4.59	5.29	1.15
Pushover+Y Mass - e	SLC	0.40	1.00	1.00	6.72	6.72	7.20	6.60	0.92
Pushover-Y Mass - e	SLO	0.05	1.00	1.00	0.51	0.51	0.55	0.78	1.41
Pushover-Y Mass - e	SLD	0.08	1.00	1.00	0.76	0.76	0.82	3.05	3.74
Pushover-Y Mass - e	SLV	0.29	1.00	1.00	4.29	4.29	4.59	6.37	1.39
Pushover-Y Mass - e	SLC	0.40	1.00	1.00	6.72	6.72	7.20	9.19	1.28
Pushover+X Mass and heigth -	SLO	0.05	1.00	1.00	0.57	0.57	0.61	0.97	1.59
Pushover+X Mass and heigth -	SLD	0.08	1.00	1.00	0.84	0.84	0.90	1.63	1.82
Pushover+X Mass and heigth -	SLV	0.29	1.00	1.00	4.72	4.72	5.05	5.03	0.99
Pushover+X Mass and heigth -	SLC	0.40	1.00	1.00	7.39	7.39	7.92	6.30	0.80
Pushover-X Mass and heigth -	SLO	0.05	1.00	1.00	0.56	0.56	0.60	0.78	1.31
Pushover-X Mass and heigth -	SLD	0.08	1.00	1.00	0.83	0.83	0.89	1.32	1.48
Pushover-X Mass and heigth -	SLV	0.29	1.00	1.00	4.67	4.67	5.01	5.26	1.05
Pushover-X Mass and heigth -	SLC	0.40	1.00	1.00	7.32	7.32	7.85	6.49	0.83

Analisi	Stato			Rich		Capacita'	α		
	limite	PGA/g	S	q*	d* _{e,}	d* _{max}	d _{max}	d _{sL}	
Pushover+Y Mass and heigth -	SLO	0.05	1.00	1.00	0.61	0.61	0.65	0.56	0.87
Pushover+Y Mass and heigth -	SLD	0.08	1.00	1.00	0.90	0.90	0.96	0.85	0.89
Pushover+Y Mass and heigth -	SLV	0.29	1.00	1.00	5.04	5.04	5.40	6.37	1.18
Pushover+Y Mass and heigth -	SLC	0.40	1.00	1.00	7.90	7.90	8.47	6.37	0.75
Pushover-Y Mass and heigth -	SLO	0.05	1.00	1.00	0.61	0.61	0.66	0.66	1.01
Pushover-Y Mass and heigth -	SLD	0.08	1.00	1.00	0.91	0.91	0.97	2.84	2.93
Pushover-Y Mass and heigth -	SLV	0.29	1.00	1.00	5.10	5.10	5.46	6.71	1.23
Pushover-Y Mass and heigth -	SLC	0.40	1.00	1.00	7.99	7.99	8.56	10.00	1.17

Legenda relativa alla tabella di Stima di Vulnerabilità :

- PGA : accelerazione di riferimento per il sito di costruzione
- S : coefficiente suolo
- q^{*} : fattore di struttura
- $d^{*}_{e_max}$: massimo spostamento del sistema elastico equivalente
- d^{*}_{max} : massimo spostamento del sistema bilineare equivalente
- d_max : massimo spostamento del sistema reale (richiesta di spostamento)
- d_{SL} : capacità di spostamento del sistema reale allo stato limite considerato
- α : coefficiente di sicurezza (d_{SL} / d_{max})

14.2 VERIFICHE DI SICUREZZA IN TERMINI DI FORZA

In aggiunta alle verifiche precedenti, nel rispetto del punto 7.8.1.6 delle Norme Tecniche per le Costruzioni 2008, è necessario determinare il rapporto tra il taglio totale agente sulla base del sistema equivalente ad un grado di libertà calcolato dallo spettro di risposta elastico e il taglio alla base resistente del sistema equivalente ad un grado di libertà ottenuto dall'analisi non lineare; affinché la verifica di sicurezza risulti soddisfatta, tale rapporto non deve superare il valore numerico di 3.

Analisi	$V_{b, agente}$	V _{b, resistente}	V _{b, agente} /V _{b, resistente}	Fattore di sicurezza
	kN	kN		
Pushover+X Massa + e	11823.86	3051.89	3.874279 > 3	0.77
Pushover-X Massa + e	11823.86	3072.51	3.848277 > 3	0.78
Pushover+Y Massa + e	10801.83	2143.81	5.038626 > 3	0.60
Pushover-Y Massa + e	10824.66	2285.86	4.735478 > 3	0.63
Pushover+X Mass and height + e	9808.21	2185.35	4.488173 > 3	0.67
Pushover-X Mass and height + e	9877.73	2227.24	4.434958 > 3	0.68
Pushover+Y Mass and height + e	9085.63	1681.07	5.40466 > 3	0.56
Pushover-Y Mass and height + e	9197.28	1818.04	5.058905 > 3	0.59
Pushover+X Mass - e	11823.86	3078.51	3.840774 > 3	0.78
Pushover-X Mass - e	11823.86	3101.51	3.812291 > 3	0.79
Pushover+Y Mass - e	10760.35	2199.67	4.891813 > 3	0.61
Pushover-Y Mass - e	10758.23	2236.77	4.809723 > 3	0.62
Pushover+X Mass and heigth - e	9783.54	2227.27	4.392626 > 3	0.68
Pushover-X Mass and heigth - e	9872.16	2225.84	4.435253 > 3	0.68
Pushover+Y Mass and heigth - e	9149.96	1712.69	5.34245 > 3	0.56
Pushover-Y Mass and heigth - e	9047.77	1807.25	5.006358 > 3	0.60

Legenda relativa alla tabella di Stima di Vulnerabilità :

V u : taglio alla base massimo del sistema;

V el : taglio alla base massimo relativo al sistema elastico equivalente;

 $FS = 3/(V_{el} / V_u)$: fattore di sicurezza;

14.3 VERIFICHE A TAGLIO DELLE SEZIONI

Le verifiche di resistenza a taglio per le sezioni delle aste in CA sono state realizzate seguendo il criterio dell'inclinazione variabile del puntone. Nel seguito verranno riepilogate esclusivamente le verifiche a taglio per le aste in CA che presentano almeno una sezione non verificata, con riferimento ai differenti stati limite. Per maggiori dettagli sulle singole verifiche si rimanda ai tabulati di riferimento.

Asta	Formato	Analisi	Stato	Sezione	V _{sd}	V _{rd}	Coefficiente di
				m	kN	kN	
		Pilastri (aste a compor	rtamento trid	imensional	e)		
366	PIL_vanoscala_terra	Pushover-Y Mass and heigth	SLV	0.38	54.93	48.14	0.88
368	PIL_vanoscala_terra	Pushover-Y Mass and height	SLV	0.09	264.07	48.14	0.18
369	PIL_vanoscala_terra	Pushover+Y Mass and height	SLV	0.09	65.88	48.14	0.73
378	PIL_vanoscala_terra	Pushover-Y Mass and heigth	SLV	0.09	210.15	48.14	0.23
386	PIL_vanoscala_terra	Pushover+Y Mass and height	SLV	1.41	243.63	48.14	0.20
466	PIL_vanoscala_interr	Pushover+Y Mass - e	SLV	0.18	154.42	67.06	0.43
473	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.10	203.02	67.06	0.33
563	PIL_palestra_primo	Pushover+X Mass and height	SLV	0.12	110.87	109.36	0.99
572	PIL_palestra_primo	Pushover+Y Mass and height	SLV	0.12	182.23	109.36	0.60
579	PIL_palestra_primo	Pushover-Y Mass - e	SLV	1.12	114.48	109.36	0.96
586	PIL_palestra_terra	Pushover-X Mass and height	SLV	0.12	198.87	71.12	0.36
587	PIL_palestra_terra	Pushover+X Mass and heigth	SLV	1.59	156.44	71.12	0.45
594	PIL_palestra_terra	Pushover-X Massa + e	SLV	0.09	216.62	71.12	0.33
596	PIL_palestra_terra	Pushover+X Mass - e	SLV	1.59	209.74	71.12	0.34
601	PIL_palestra_terra	Pushover+X Mass - e	SLV	0.09	197.45	71.12	0.36
603	PIL_palestra_terra	Pushover+X Mass and heigth	SLV	1.59	109.49	71.12	0.65
605	PIL_palestra_terra	Pushover+X Mass and heigth	SLV	0.09	160.84	71.12	0.44
607	PIL_palestra_terra	Pushover+Y Mass and height	SLV	1.59	77.54	75.68	0.98
611	PIL_palestra_interr	Pushover+Y Massa + e	SLV	0.12	148.91	80.73	0.54
612	PIL_palestra_interr	Pushover-Y Mass - e	SLV	1.88	152.73	80.73	0.53
613	PIL_palestra_interr	Pushover+X Massa + e	SLV	0.12	129.81	80.73	0.62
625	PIL_palestra_interr	Pushover+X Massa + e	SLV	0.12	133.31	80.73	0.61
626	PIL_palestra_interr	Pushover+X Massa + e	SLV	1.88	120.98	80.73	0.67
633	PIL_palestra_interr	Pushover+X Massa + e	SLV	0.12	139.15	80.73	0.58
409	PIL_palestra_primo	Pushover-Y Mass and heigth	SLV	0.12	167.43	109.36	0.65
412	PIL_palestra_primo	Pushover+Y Massa + e	SLV	1.12	111.16	109.36	0.98
433	PIL_palestra_terra	Pushover-X Mass - e	SLV	0.12	83.15	71.12	0.86
434	PIL_palestra_terra	Pushover-X Mass - e	SLV	0.45	109.22	71.12	0.65
435	PIL_palestra_terra	Pushover-X Mass - e	SLV	0.11	108.74	71.12	0.65
436	PIL_palestra_terra	Pushover+X Mass and heigth	SLV	1.59	167.97	71.12	0.42
451	PIL_palestra_terra	Pushover+X Mass - e	SLV	0.79	133.83	71.12	0.53
452	PIL_palestra_terra	Pushover+X Mass - e	SLV	0.11	133.58	71.12	0.53
453	PIL_palestra_terra	Pushover+X Mass and heigth	SLV	1.59	185.46	71.12	0.38

Tabella 20: Verifiche a taglio non soddisfatte per sezioni in c.a.

Asta	Formato	Analisi	Stato	Sezione	V _{sd}	V _{rd}	Coefficiente di
				m	kN	kN	
455	PIL_palestra_terra	Pushover+X Massa + e	SLV	0.12	85.31	71.12	0.83
456	PIL_palestra_terra	Pushover+X Mass - e	SLV	0.79	108.19	71.12	0.66
457	PIL_palestra_terra	Pushover+X Mass - e	SLV	0.11	107.94	71.12	0.66
458	PIL_palestra_terra	Pushover-X Mass and heigth	SLV	1.59	143.59	71.12	0.50
459	PIL_palestra_terra	Pushover-Y Mass and heigth	SLV	0.12	106.01	75.68	0.71
462	PIL_palestra_terra	Pushover-Y Mass and heigth	SLV	1.59	76.44	75.68	0.99
489	PIL_palestra_interr	Pushover+X Mass - e	SLV	0.09	104.15	80.73	0.78
500	PIL_palestra_interr	Pushover-X Massa + e	SLV	0.61	92.34	80.73	0.87
512	PIL_palestra_interr	Pushover-X Mass - e	SLV	0.09	99.12	80.73	0.81
513	PIL_palestra_interr	Pushover+X Mass - e	SLV	0.79	116.72	80.73	0.69
529	PIL_palestra_interr	Pushover+X Mass - e	SLV	0.11	116.44	80.73	0.69
535	PIL_palestra_interr	Pushover-X Mass - e	SLV	0.09	146.34	80.73	0.55
543	PIL_palestra_interr	Pushover+X Massa + e	SLV	0.61	95.94	80.73	0.84
544	PIL_palestra_interr	Pushover-Y Mass - e	SLV	0.09	130.43	80.73	0.62
571	PIL_palestra_interr	Pushover+Y Massa + e	SLV	1.22	89.45	80.73	0.90
574	PIL_palestra_interr	Pushover+Y Massa + e	SLV	0.61	138.58	80.73	0.58
241	PIL_vanoscala_primo	Pushover+Y Mass and height	SLV	0.15	92.62	75.22	0.81
385	PIL_vanoscala_primo	Pushover-Y Mass and heigth	SLV	0.15	104.05	75.22	0.72
515	PIL_vanoscala_terra	Pushover-Y Massa + e	SLV	0.12	72.05	48.14	0.67
516	PIL_vanoscala_terra	Pushover+Y Mass and height	SLV	0.45	55.89	48.14	0.86
517	PIL_vanoscala_terra	Pushover-Y Mass and heigth	SLV	1.59	249.90	48.14	0.19
524	PIL_vanoscala_interr	Pushover+Y Mass - e	SLV	0.09	100.66	67.06	0.67
525	PIL_vanoscala_interr	Pushover-Y Mass - e	SLV	1.69	76.74	67.06	0.87
526	PIL_vanoscala_interr	Pushover-Y Mass - e	SLV	0.61	117.06	67.06	0.57
622	PIL_vanoscala_terra	Pushover-X Mass and heigth	SLV	0.12	120.61	45.13	0.37
627	PIL_vanoscala_terra	Pushover-Y Mass - e	SLV	0.45	69.94	48.14	0.69
628	PIL_vanoscala_terra	Pushover+Y Mass and height	SLV	1.59	116.98	48.14	0.41
629	PIL_vanoscala_interr	Pushover-X Mass - e	SLV	0.08	81.00	67.06	0.83
635	PIL_vanoscala_interr	Pushover+Y Mass - e	SLV	1.22	114.20	67.06	0.59
335	PIL_vanoscala_terra	Pushover+X Massa + e	SLV	0.12	56.44	45.13	0.80
337	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	0.88	86.93	45.13	0.52
338	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	0.12	86.83	45.13	0.52
340	PIL_vanoscala_terra	Pushover-X Mass and height	SLV	1.41	116.11	45.13	0.39
352	PIL_vanoscala_terra	Pushover-X Massa + e	SLV	0.12	59.46	45.13	0.76
354	PIL_vanoscala_terra	Pushover-X Mass and heigth	SLV	0.88	84.48	45.13	0.53
355	PIL_vanoscala_terra	Pushover-X Mass and heigth	SLV	0.12	84.38	45.13	0.53
356	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	1.41	119.87	45.13	0.38
382	PIL_vanoscala_terra	Pushover-Y Mass and heigth	SLV	1.41	207.57	48.14	0.23
383	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	0.09	220.87	45.13	0.20
384	PIL_vanoscala_terra	Pushover+Y Mass and height	SLV	0.12	226.60	48.14	0.21
406	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	0.08	212.83	67.06	0.32
407	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	1.31	141.56	67.06	0.47
408	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	0.08	246.58	67.06	0.27

Asta	Formato	Analisi	Stato	Sezione	V _{sd}	V _{rd}	Coefficiente di
				m	kN	kN	
418	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	0.08	114.52	67.06	0.59
421	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	1.22	96.64	67.06	0.69
470	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	0.08	107.93	67.06	0.62
484	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	1.22	92.79	67.06	0.72
504	PIL_vanoscala_terra	Pushover+X Massa + e	SLV	0.12	86.65	45.13	0.52
505	PIL_vanoscala_terra	Pushover+X Mass and height	SLV	1.69	67.56	45.13	0.67
506	PIL_vanoscala_terra	Pushover+X Mass and height	SLV	0.02	67.46	45.13	0.67
508	PIL_vanoscala_terra	Pushover-X Mass - e	SLV	1.41	58.93	45.13	0.77
528	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	0.08	93.67	67.06	0.72
264	PIL_vanoscala_primo	Pushover+Y Mass - e	SLV	0.15	83.22	75.22	0.90
304	PIL_vanoscala_terra	Pushover-Y Mass and height	SLV	0.09	172.85	48.14	0.28
314	PIL_vanoscala_terra	Pushover+Y Mass - e	SLV	1.41	52.61	48.14	0.92
317	PIL_vanoscala_terra	Pushover+Y Mass - e	SLV	0.09	91.87	48.14	0.52
318	PIL_vanoscala_terra	Pushover+Y Mass - e	SLV	0.10	55.60	48.14	0.87
319	PIL_vanoscala_terra	Pushover+Y Mass and height	SLV	1.22	233.71	48.14	0.21
325	PIL_vanoscala_interr	Pushover+Y Mass - e	SLV	0.12	150.29	67.06	0.45
334	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.12	190.62	67.06	0.35
336	PIL_vanoscala_interr	Pushover-X Mass - e	SLV	0.08	245.20	67.06	0.27
364	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	1.22	162.45	67.06	0.41
480	PIL_vanoscala_terra	Pushover+Y Massa + e	SLV	0.10	53.93	48.14	0.89
485	PIL_vanoscala_terra	Pushover-Y Massa + e	SLV	1.22	91.52	48.14	0.53
490	PIL_vanoscala_terra	Pushover-X Mass and heigth	SLV	0.09	269.06	45.13	0.17
491	PIL_vanoscala_terra	Pushover+Y Mass and heigth	SLV	0.09	189.66	48.14	0.25
147	30_30	Pushover+X Mass and height	SLV	0.15	116.44	75.22	0.65
206	PIL_vanoscala_terra	Pushover-X Massa + e	SLV	0.12	54.78	45.13	0.82
209	PIL_vanoscala_terra	Pushover-X Mass and heigth	SLV	0.45	64.42	45.13	0.70
214	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	1.59	215.27	45.13	0.21
217	30_90	Pushover-Y Mass and heigth	SLV	0.12	518.41	284.16	0.55
218	30_90	Pushover+X Massa + e	SLV	0.45	157.14	117.01	0.74
219	30_90	Pushover-X Mass - e	SLV	1.59	145.51	117.01	0.80
239	PIL_vanoscala_terra	Pushover+X Massa + e	SLV	0.12	70.94	45.13	0.64
245	PIL_vanoscala_terra	Pushover-X Mass - e	SLV	0.45	65.93	45.13	0.68
247	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	1.59	215.55	45.13	0.21
254	PIL_vanoscala_interr	Pushover+X Massa + e	SLV	0.09	89.78	67.06	0.75
255	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	1.35	98.84	67.06	0.68
256	PIL_vanoscala_interr	Pushover+X Massa + e	SLV	0.61	99.24	67.06	0.68
308	PIL_vanoscala_interr	Pushover-X Mass - e	SLV	0.09	97.85	67.06	0.69
349	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	1.35	99.52	67.06	0.67
350	PIL_vanoscala_interr	Pushover+X Mass - e	SLV	0.61	79.41	67.06	0.84
482	PIL_vanoscala_primo	Pushover-Y Massa + e	SLV	0.15	101.51	75.22	0.74
566	PIL_vanoscala_terra	Pushover-X Mass - e	SLV	0.12	78.00	45.13	0.58
567	PIL_vanoscala_terra	Pushover-X Mass - e	SLV	1.35	59.02	45.13	0.76
568	PIL_vanoscala_terra	Pushover-Y Mass and heigth	SLV	1.59	142.15	48.14	0.34

Asta	Formato	Analisi	Stato	Sezione	V _{sd}	V _{rd}	Coefficiente di
				m	kN	kN	
573	PIL_vanoscala_interr	Pushover-X Mass - e	SLV	0.09	93.86	67.06	0.71
576	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.52	80.51	67.06	0.83
580	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.61	107.42	67.06	0.62
609	30_90	Pushover-Y Mass - e	SLV	0.09	456.76	284.16	0.62
610	30_90	Pushover-Y Mass - e	SLV	0.45	306.65	284.16	0.93
179	PIL_tel_est_terra	Pushover-X Mass - e	SLV	0.12	71.03	59.61	0.84
191	PIL_tel_est_terra	Pushover+X Mass - e	SLV	1.59	104.18	59.61	0.57
240	PIL_perim_terra	Pushover-X Massa + e	SLV	0.45	38.54	36.43	0.95
246	PIL_perim_terra	Pushover-X Mass and heigth	SLV	1.59	183.06	36.43	0.20
251	PIL_tel_est_terra	Pushover-X Mass - e	SLV	0.45	79.04	59.61	0.75
257	PIL_tel_est_terra	Pushover+X Mass - e	SLV	1.59	120.04	59.61	0.50
274	PIL_perim_terra	Pushover-X Mass - e	SLV	0.12	85.91	36.43	0.42
276	PIL_perim_terra	Pushover-X Massa + e	SLV	0.45	43.00	36.43	0.85
278	PIL_perim_terra	Pushover-X Mass and heigth	SLV	1.59	172.46	36.43	0.21
310	PIL_vanoscala_terra	Pushover-X Mass and height	SLV	0.12	297.36	45.13	0.15
311	PIL_vanoscala_terra	Pushover+X Mass and heigth	SLV	0.45	67.55	45.13	0.67
312	PIL_vanoscala_terra	Pushover-X Mass - e	SLV	1.59	189.90	45.13	0.24
322	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.12	130.20	67.06	0.52
330	PIL_vanoscala_terra	Pushover+X Mass and height	SLV	1.35	49.95	45.13	0.90
475	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.09	79.96	67.06	0.84
172	PIL_perim_terra	Pushover-X Mass - e	SLV	0.10	76.01	36.43	0.48
187	PIL_perim_terra	Pushover+X Mass and heigth	SLV	1.22	43.77	36.43	0.83
299	PIL_vanoscala_terra	Pushover+Y Mass - e	SLV	0.09	55.96	48.14	0.86
300	PIL_vanoscala_terra	Pushover-Y Mass - e	SLV	0.02	48.48	48.14	0.99
302	PIL_vanoscala_terra	Pushover+Y Mass and heigth	SLV	1.22	149.34	48.14	0.32
365	PIL_vanoscala_interr	Pushover-Y Massa + e	SLV	0.12	192.03	67.06	0.35
		Pa	rete 1				
588	TR_30_60_palestra	Pushover-X Massa + e	SLV	0.10	219.10	116.39	0.53
589	TR_30_60_palestra	Pushover+X Massa + e	SLV	2.40	244.63	116.39	0.48
599	TR_30_60_palestra	Pushover+X Mass and heigth	SLV	1.87	122.33	116.39	0.95
600	TR_30_60_palestra	Pushover+X Mass and heigth	SLV	0.06	123.26	116.39	0.94
604	TR_30_50_palestra	Pushover+X Massa + e	SLV	2.57	164.03	116.39	0.71
608	TR_30_50_palestra_PT	Pushover+X Massa + e	SLV	2.57	129.12	102.42	0.79
615	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.44	120.66	79.40	0.66
616	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.12	125.39	79.40	0.63
617	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	1.87	129.29	79.40	0.61
618	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.06	119.82	79.40	0.66
623	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.10	196.61	79.40	0.40
624	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	2.40	183.92	79.40	0.43
632	TR_30_50_palestra_PT	Pushover+X Massa + e	SLV	2.33	125.54	102.42	0.82
		Pa	rete 2				
422	TR_30_50_palestra	Pushover+X Massa + e	SLV	2.33	183.61	116.39	0.63
428	TR_30_60 palestra	Pushover+X Massa + e	SLV	0.06	89.56	116.39	1.30
L				1			

Asta	Formato	Analisi	Stato	Sezione	V _{sd}	V _{rd}	Coefficiente di
				m	kN	kN	
432	TR_30_60_palestra	Pushover+X Mass and heigth	SLV	0.44	117.96	116.39	0.99
454	TR_30_50_palestra	Pushover+X Massa + e	SLV	2.57	171.07	116.39	0.68
463	TR_30_50_palestra_PT	Pushover+X Massa + e	SLV	2.57	191.12	102.42	0.54
464	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.06	133.92	79.40	0.59
465	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.75	138.36	79.40	0.57
474	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.50	112.55	79.40	0.71
487	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.75	136.87	79.40	0.58
488	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.44	101.07	79.40	0.79
501	TR_30_60_4f12_PT	Pushover-X Massa + e	SLV	0.06	101.08	79.40	0.79
502	TR_30_60_4f12_PT	Pushover-X Massa + e	SLV	0.75	143.36	79.40	0.55
507	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.50	106.16	79.40	0.75
509	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.76	130.46	79.40	0.61
510	TR_30_60_4f12_PT	Pushover+X Massa + e	SLV	0.44	137.07	79.40	0.58
534	TR_30_50_palestra_PT	Pushover+X Massa + e	SLV	0.10	201.78	102.42	0.51
		Ра	rete 3				
439	TR_30_85_palestra_PT	Pushover-Y Massa + e	SLV	0.09	209.06	178.69	0.85
441	TR_30_85_palestra_PT	Pushover+Y Massa + e	SLV	2.78	198.96	178.69	0.90
		Ра	rete 4				
141	TR_30_75_centr	Pushover+X Mass - e	SLV	0.45	159.18	37.61	0.24
151	TR_30_75_centr	Pushover-X Mass and heigth	SLV	0.11	122.68	100.29	0.82
237	TR_30_85_palestra	Pushover-X Massa + e	SLV	0.11	255.81	203.06	0.79
497	TR_30_60_4f12	Pushover-Y Mass - e	SLV	0.13	83.26	79.40	0.95
511	TR_30_45_2f12	Pushover+Y Massa + e	SLV	1.73	163.73	104.01	0.64
514	TR_30_60_2f12	Pushover-Y Mass and height	SLV	2.87	210.78	141.15	0.67
518	TR_30_75_centr	Pushover-Y Mass and heigth	SLV	0.40	115.47	100.29	0.87
527	TR_30_60_4f12_PT	Pushover+Y Massa + e	SLV	2.87	175.55	79.40	0.45
533	TR_30_45_2f12	Pushover+Y Massa + e	SLV	1.73	147.63	104.01	0.70
		Pa	rete 5	1	I		
405	TR_H60_centr_PT	Pushover-X Massa + e	SLV	1.06	166.71	124.21	0.75
467	TR_H60_centr_PT	Pushover+X Massa + e	SLV	0.08	133.79	124.21	0.93
		Pa	rete 6	1	I		
307	TR_30_45_2f12	Pushover+Y Mass and height	SLV	0.10	114.22	104.01	0.91
359	TR_30_75_centr_PT	Pushover+Y Massa + e	SLV	0.43	105.81	100.29	0.95
360	TR_30_75_centr	Pushover-Y Mass and height	SLV	0.14	105.93	100.29	0.95
403	TR_30_75_centr_PT	Pushover-Y Massa + e	SLV	0.10	323.75	100.29	0.31
483	TR_30_45_2f12	Pushover+Y Massa + e	SLV	0.10	124.75	104.01	0.83
		Pa	rete 7	1	I		
267	TR_30_75_centr	Pushover+X Mass - e	SLV	0.39	37.98	37.61	0.99
294	TR_30_75_centr	Pushover+Y Mass and heigth	SLV	0.14	108.46	100.29	0.92
327	TR_30_45_2f12	Pushover-Y Massa + e	SLV	0.70	132.28	104.01	0.79
	1	Ра	rete 8		1	1	
250	TR_H60_centr_PT	Pushover-X Massa + e	SLV	0.07	145.15	124.21	0.86
252	TR_H60_centr_PT	Pushover-X Massa + e	SLV	0.70	158.16	124.21	0.79
L		1					

Asta	Formato	Analisi	Stato	Sezione	V _{sd}	V _{rd}	Coefficiente di	
				m	kN	kN		
253	TR_H60_centr_PT	Pushover+X Massa + e	SLV	1.02	157.88	124.21	0.79	
262	TR_H60_centr_PT	Pushover-X Massa + e	SLV	0.07	176.28	124.21	0.70	
280	TR_H60_centr_PT	Pushover+X Mass and height	SLV	1.03	149.82	124.21	0.83	
479	TR_H60_centr_PT	Pushover+X Massa + e	SLV	0.70	147.66	124.21	0.84	
481	TR_H60_centr_PT	Pushover+X Massa + e	SLV	0.97	164.52	124.21	0.76	
Parete 10								
286	TR_H60_centr_PT	Pushover-Y Massa + e	SLV	0.13	150.09	124.21	0.83	
Parete 11								
134	TR_30_60_5f18	5f18 Pushover+X Massa + e		0.43	102.13	79.40	0.78	
Parete 12								
228	TR_tel_est	Pushover-Y Massa + e	SLV	0.43	217.27	190.68	0.88	
283	TR_tel_est	Pushover+Y Massa + e	SLV	0.14	217.37	190.68	0.88	

14.4 INDICATORI DI RISCHIO

Nel presente paragrafo viene riportata la tabella degli indicatori di rischio, opportunamente divisa in due sezioni per comodità di lettura. In particolare la tabella 21 riporta gli indicatori di rischio in termini di PGA, mente la tabella 22 riporta gli indicatori di rischio in termini di tempo di ritorno.

Evento di crisi monitorato	PGA	PGA _{CLO} /	PGA _{CLD} /	PGA _{CLV} /	PGA _{CLC} /
	(g)	PGA _{DLO}	PGA _{DLD}	PGA _{DLV}	PGA _{DLC}
Rottura a taglio nella muratura	0.063	1.150	0.823	0.220	0.156
Rotazione limite nella muratura	0.200	3.656	2.617	0.698	0.496
Rottura a taglio in un'asta	0.034	0.622	0.445	0.119	0.084
Rotazione di snervamento in un'asta	0.034	0.622	0.445	0.119	0.084
3/4 della rotazione ultima in un'asta	0.257	4.680	3.350	0.894	0.635
Rottura a flessione in un'asta	0.224	4.079	2.919	0.779	0.553
Analisi globale in termini di forza	0.224			-	0.555
- Direzione X	0.27				0.668
- Direzione Y	0.224				0.555
Analisi globale (SLO)	0.0439	0.801			
- Direzione X	0.0716	1.305			
- Direzione Y	0.0439	0.801			
Analisi globale (SLD)	0.0678		0.885		
- Direzione X	0.105		1.374		
- Direzione Y	0.0678		0.885		
Analisi globale (SLV)	0.286			0.995	
- Direzione X	0.286			0.995	
- Direzione Y	0.315			1.097	
Analisi globale (SLC)	0.283				0.700
- Direzione X	0.322				0.796

Tabella 21: Indicatori di rischio in termini accelerazione (PGA)

Legenda:

PGA: accelerazione al suolo;

PGA_{CLO}/PGA_{DLO}: indicatore di rischio relativo al rapporto di PGA per lo SLO; PGA_{CLD}/PGA_{DLD}: indicatore di rischio relativo al rapporto di PGA per lo SLD; PGA_{CLV}/PGA_{DLV}: indicatore di rischio relativo al rapporto di PGA per lo SLV; PGA_{CLC}/PGA_{DLC}: indicatore di rischio relativo al rapporto di PGA per lo SLC.

Evento di crisi monitorato	Tr	(TR _{CLO} /TR _{DLO}) ^a	(TR _{CLD} /TR _{DLD}) ^a	(TR _{CLV} /TR _{DLV}) ^a	(TR _{CLC} /TR _{DLC}) ^a
	(anni)				
Rottura a taglio nella muratura	75	1.096	0.887	0.352	0.262
Rotazione limite nella muratura	461	2.312	1.872	0.743	0.553
Rottura a taglio in un'asta	30	0.751	0.608	0.241	0.179
Rotazione di snervamento in	30	0.751	0.608	0.241	0.179
3/4 della rotazione ultima in	755	2.830	2.292	0.910	0.677
Rottura a flessione in un'asta	573	2.526	2.046	0.812	0.604
Analisi globale in termini di forza	576.392				0.606
- Direzione X	836.962				0.606
- Direzione Y	576.392				0.606
Analisi globale (SLO)	42.5899	0.867			
- Direzione X	90.8798	1.185			
- Direzione Y	42.5899	0.867			
Analisi globale (SLD)	83.7809		0.928		
- Direzione X	155.91		1.198		
- Direzione Y	83.7809		0.928		
Analisi globale (SLV)	935.042			0.994	
- Direzione X	935.042			0.994	
- Direzione Y	1137.13			1.077	
Analisi globale (SLC)	918.731				0.734
- Direzione X	1187.51				0.815

Tabella 22: Indicatori di rischio in termini di tempo di ritorno (Tr)

Legenda:

Tr: periodo di ritorno $(TR_{CLO}/TR_{DLO})^a$: indicatore di rischio relativo al rapporto di Tr per lo SLO; $(TR_{CLD}/TR_{DLD})^a$: indicatore di rischio relativo al rapporto di Tr per lo SLD;

 $(TR_{CLV}/TR_{DLV})^{a}$: indicatore di rischio relativo al rapporto di Tr per lo SLV;

 $(TR_{CLC}/TR_{DLC})^{a}$: indicatore di rischio relativo al rapporto di Tr per lo SLC.

14.5 CONSIDERAZIONI SULLA SICUREZZA SISMICA

Di seguito si riportano i coefficienti di rischio sismico minimi in termini di PGA, divisi tra duttili e fragili. La prima categoria è governata dal comportamento flessionale ed in particolare dal raggiungimento della rotazione plastica ultima delle sezioni in calcestruzzo armato, la seconda categoria (meccanismi fragili) è caratterizzata dalle rotture fragili a taglio nelle sezioni in c.a.

Coefficienti di rischio in termini di PGA	SLO	SLD	SLV	SVD
Meccanismi fragili	0, 62	0,45	0,12	0,08
Meccanismi duttili	0,8	0,89	0,78	0,55

Nella presente tabella, come peraltro nelle tabelle estese del capitolo precedente, non sono stati considerati tempi di ritorno inferiori a 30 anni o superiori a 2475 anni che rappresentano il limite inferiore e superiore dei dati inseriti nell'Allegato B alle norme tecniche per le costruzioni (tabelle dei parametri che definiscono l'azione sismica).

15 VERIFICHE STATICHE SLU

Nel presente paragrafo vengono riportati i risultati delle analisi condotte con riferimento ai soli carichi gravitazionali combinati in accordo alla combinazione da Stato Limite Ultimo (combinazione rara). La verifica viene eseguita, in accordo al paragrafo 4.5.6 delle NTC '08, mediante l'utilizzo di analisi non lineari (cfr. 4.5.5 delle NTC'08: analisi strutturale).

Le combinazioni di carico da applicare alla struttura vengono determinate a partire dalla combinazione base per la verifica degli SLU contenuta al punto 2.5.3 delle NTC'08 e di seguito riportata:

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \dots + \gamma_{Gi} \cdot G_i + \gamma_{Q1} \cdot Q_{K1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{K2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{K3} + \dots + \gamma_{Qi} \cdot \psi_{0i} \cdot Q_{Ki}$ (1) Dove:

G_i = valore caratteristico dell'i-esimo carico permanente;

Q_{K1} = valore caratteristico del carico variabile principale;

Q_{ki} = (con i=2,..,n) valore caratteristico dell'i-esimo carico variabile secondario;

 γ_{Gi} = coefficiente parziale associato all'i-esimo carico permanente (tabella 2.6.1 verifica *STR*);

 γ_{Qi} = coefficiente parziale associato all'i-esimo carico permanente (tabella 2.6.1 verifica *STR*);

 ψ_{0i} = coefficiente di combinazione dell'i-esimo carico variabile, determinato in accordo alla tabella 2.5.I delle NTC '08;

Tutti i carichi applicati vengono inseriti in opportune *condizioni di carico* che servono a dichiarare la natura del carico stesso:

- carichi strutturali;

- carichi permanenti non strutturali;

 - carichi variabili da azioni antropiche (sovraccarico accidentale associato alla destinazione d'uso degli ambienti);

- carichi variabili da neve;

Nell'ambito dell'intera struttura viene prevista una sola condizione di carico variabile, inoltre tutte le condizioni di carico permanente sono state considerate come *sfavorevole*, pertanto è stato necessario prevedere una unica combinazione di carico, secondo quanto previsto nella (1).

Procedura di analisi

Con riferimento a ciascuna combinazione di carico, la risposta della struttura viene determinata mediante una analisi statica non lineare. Tale metodologia di analisi, esplicitamente considerata al punto 4.5.5 delle NTC'08, consente di seguire in modo completo il processo di carico e cogliere eventuali meccanismi di collasso o di danneggiamento. Con tale approccio, eventuali crisi locali della struttura (ad esempio elementi isolati caratterizzati da bassa resistenza) verrebbero evidenziate e in molti casi potrebbero comunque non rappresentare una condizione di collasso globale se la ridistribuzione degli sforzi associata alla crisi locale dell'elemento strutturale è tale da garantire comunque una risposta equilibrata. Ciò può accadere ad esempio in corrispondenza dei telai inseriti nelle compagini murarie negli 'infilled frame' cioè nei telai con murature portanti inserite.

Il processo di carico associato alla push-over per carichi verticali è di tipo incrementale a controllo di forze, esso consiste nell'applicare alla struttura aliquote costanti di carico (*step* di carico), fino alla completa applicazione dei carichi gravitazionali. L'analisi verrà interrotta se vengono riscontrate situazioni di labilità che coinvolgono l'intera struttura o parti di essa, che denotano situazioni di crisi della struttura con conseguente impossibilità di raggiungimento di una configurazione equilibrata.

All'interno di ciascun passo di carico, il comportamento della struttura viene considerato di tipo elastico lineare (passi lineari di carico), caratterizzato da una matrice di rigidezza tangente. Il problema risulta governato dalle seguenti equazioni di equilibrio:

$$dF = K \cdot dU$$

Con:

dU = incremento nel passo degli spostamenti nodali;

dF = vettore delle forze nodali esterne relative al passo in esame;

K = matrice di rigidezza tangente al passo.

Figura 77:Schema di carico

Per ciascuna analisi il programma archivia gli sforzi degli elementi in corrispondenza dell'ultimo passo: tali dati, necessari alle verifiche di resistenza, vengono riportati nei tabulati di output. A differenza di quanto avviene nelle analisi push-over, utilizzate per la verifica sismica, in questo caso non viene definita alcuna curva di capacità della struttura; non vi è la necessità quindi di definire opportuni punti di controllo.

In corrispondenza dello stato finale, corrispondente alla completa applicazione dei carichi gravitazionali, vengono effettuate le seguenti verifiche:

1- Verifica della duttilità disponibile a taglio dei pannelli (rottura fragile dei pannelli)

2- Verifica nei confronti della rottura fragile a taglio delle sezioni in c.a.

La prima verifica è risultata ovunque soddisfatta mentre le verifiche a taglio delle sezioni in c.a. hanno evidenziato delle carenze, meglio descritte nel seguito.

Figura 78: Viste assonometriche delle deformate a collasso da carichi statici (amplificata 250volte).

Di seguito si riporta l'elenco delle sezioni in c.a. che subiscono rotture fragili a taglio e i relativi coefficienti di sicurezza, definiti come: V_S/V_R , dove V_S rappresetna il taglio agente nella sezione e V_R il taglio resistente calcolato con riferimento al valore della resistenza di calcolo del calcestruzzo fc' calcolata come segue:

$$f_c' = \frac{f_{cm} \cdot FC}{\gamma c}$$

Asta	Formato	Analisi	parete	Sezione	V _{sd}	V _{rd}	Coefficiente di
							sicurezza
				m	kN	kN	
319	PIL_vanoscala_terra	SLU static	0	1.22	63.23	48.14	0.76
464	TR_30_60_4f12_PT	SLU static	2	0.06	85.88	79.40	0.92
510	TR_30_60_4f12_PT	SLU static	2	0.25	80.70	79.40	0.98
359	TR_30_75_centr_PT	SLU static	6	0.14	125.14	100.29	0.80
360	TR_30_75_centr	SLU static	6	0.14	130.91	100.29	0.77
293	TR_30_75_centr	SLU static	7	0.45	103.10	100.29	0.97
294	TR_30_75_centr	SLU static	7	0.14	138.70	100.29	0.72
134	TR_30_60_5f18	SLU static	11	0.43	156.54	79.40	0.51
176	TR_H60_centr_PT	SLU static	11	0.14	128.43	124.21	0.97
181	TR_tel_est	SLU static	12	0.43	210.29	190.68	0.91
202	TR_tel_est	SLU static	12	0.14	212.78	190.68	0.90
228	TR_tel_est	SLU static	12	0.43	279.41	190.68	0.68
283	TR_tel_est	SLU static	12	0.14	279.12	190.68	0.68

Tabella 23: Verifiche a taglio non soddisfatte per sezioni in CA

15.2 CONSIDERAZIONI SULLA SICUREZZA STATICA DELL'EDIFICIO

Osservando i risultati delle verifiche a taglio in condizioni statiche (combinazione rara), si nota che giungono a rottura un numero limitato di elementi, per lo più travi aeree che non beneficiano del contributo delle murature per l'assorbimento dei carichi gravitazionali (fa eccezione il pilastro 319 e le travi della palestra 148 e 380). La sicurezza dell'edificio, **limitatamente alle condizioni statiche**, potrà pertanto essere garantita rinforzando i telai in c.a. maggiormente sollecitati nei quali sono concentrati gli elementi che hanno evidenziato crisi a taglio nelle verifiche (vedi figura 79 e 80). Non si ritiene invece necessario prevedere rinforzi delle travi interagenti con le murature poiché eventuali rotture a taglio coinvolgerebbero le pareti murarie senza pericolo di innescare crolli fragili della struttura.

Figura 79:Planimetria del piano tipo e dei telai che registrano rotture a taglio in condizioni tatiche.

Figura 80: Ubicazione degli interventi di rinforzo a taglio necessari per la sicurezza statica dell'edificio:(_____) rinforzo a taglio di travi; :(_____) rinforzo a taglio di pilastri;

16 CONCLUSIONI

La struttura in esame, denominata corpo A1 del comando provinciale dei Vigili del Fuoco di Ragusa, è stata oggetto di verifiche sia in ambito statico che sismico in accordo al Nuovo Testo unico 2008 sulle Costruzioni (NTC2008).

L'immobile, che riveste funzione strategica ai fini di Protezione Civile, possiede una tipologia strutturale assimilabile a un'intelaiatura spaziale in calcestruzzo armato interagente alle prime due elevazioni con le murature inserite nelle maglie dei telai.

Le verifiche sismiche sono state eseguite con il metodo degli Stati Limite, coerentemente a un approccio di tipo prestazionale; in particolare data la funzione strategica rivestita dalla struttura, sono stati verificati quattro stati limite: operatività, danno, salvaguardia della vita, collasso. In accordo alle procedure riportate nel NTC 08, è stato determinato un parametro globale di sicurezza per ciascuno stato limite considerato (meccanismi duttili). Inoltre l'edificio è stato verificato nei confronti dei meccanismi locali (rotture fragili) che, nel caso in esame, sono rappresentati dalle rotture a taglio degli elementi in c.a.

In accordo a quanto previsto dalla normativa vigente, al punto C8.7.1.4, le verifiche di vulnerabilità sismica sono state eseguite, mediante l'utilizzo di analisi statiche non-lineari tipo push-over potendo inquadrare la conoscenza dell'edificio nell'ambito di un livello LC2, ai sensi del punto C8.A.1.

<u>Le analisi sismiche</u> hanno evidenziato livelli di sicurezza notevolmente differenti passando dai meccanismi duttili a quelli fragili, come mostrato nella tabella che segue e che riporta i coefficienti di rischio minimi, definiti in termini di PGA:

	SLO	SLD	SLV	SVC
Meccanismi fragili (locali)	0, 62	0,45	0,12	0,09
Meccanismi duttili (globali)	0,80	0,89	0,78	0,55
Valori minimi dei livelli di sicurezza	0,62	0,45	0,12	0,09

Si evince che il livello di sicurezza della struttura è fortemente limitato dall'insorgere dei meccanismi di rottura fragile a taglio (0,12% e 0,09% rispettivamente allo stato limite di salvaguardia e di collasso), favoriti dai valori di resistenza estremamente bassi riscontrati soprattutto nei calcestruzzi degli elementi del piano terra, al di sotto dei minimi previsti dalla normativa per i calcestruzzi strutturali.

In termini di comportamento globale tuttavia la struttura possiede un livello di sicurezza maggiore (0,77% e 0,55% rispettivamente allo stato limite di salvaguardia e di collasso), tali livelli di sicurezza potranno intendersi rappresentativi solo a seguito di un intervento di miglioramento sismico rivolto a inibire i meccanismi fragili.

<u>Le verifiche in condizioni statiche</u> hanno evidenziato l'insorgere di crisi fragili a taglio in un numero limitato di elementi; si tratta perlopiù di travi aeree appartenenti ai telai in c.a. non interagenti con la muratura. In 105

particolare con riferimento alla combinazione "rara" si registra la rottura a taglio in tredici elementi (vedi tabella 23). A margine di quanto riportato è importante sottolineare che le murature presenti alle prime due elevazioni oltre a offrire un utile contributo alla resistenza alle azioni orizzontali in condizioni sismiche concorrono anche ad equilibrare i carichi verticali, come peraltro rilevato dai risultati delle prove condotte in situ (prova con martinetto singolo). La presenza delle murature rappresenta inoltre una risorsa per gli elementi in calcestruzzo armato posti a diretto contrasto con le pareti. Infatti, in occasione di eventuali crisi fragili o duttili consente una ridistribuzione degli sforzi dal telaio in c.a. alle pareti in muratura. Tale circostanza è stata presa in considerazione nelle modellazioni effettuate.

In conclusione, la sicurezza sismica e statica della struttura è prevalentemente condizionata dall'insorgere di meccanismi fragili negli elementi in calcestruzzo, favoriti dalla insufficiente resistenza del conglomerato cementizio soprattutto alla prime due elevazioni. Nelle condizioni attuali la struttura non soddisfa i requisiti di norma né in condizioni statiche né in condizioni sismiche. **Da un punto di vista statico** il rinforzo degli elementi strutturali che hanno evidenziato crisi a taglio nelle verifiche (vedi figura 79 e 80), e che non beneficiano della collaborazioni con le pareti in muratura, può rappresentare una strategia di miglioramento.

L'adeguamento sismico dell'edificio si ritiene perseguibile a condizione di rivedere lo schema portante dell'edificio mirando a una soluzione omogenea che vede una collaborazione tra muratura e calcestruzzo armato a tutte le elevazioni mediante il rinforzo degli elementi esistenti e l'inserimento di nuovi elementi strutturali.